GT2/Ejected/Coordinate.ts

176 lines
7.0 KiB
TypeScript

/* Generated from Java with JSweet 3.0.0 - http://www.jsweet.org */
/**
* Constructor taking a longitude and a latitude
*
* @param {number} longitude
* @param {number} latitude
* @class
* @author Linus Helgesson
*/
var Coordinate = /** @class */ (function () {
function Coordinate(longitude, latitude) {
if (((typeof longitude === 'number') || longitude === null) && ((typeof latitude === 'number') || latitude === null)) {
var __args = arguments;
this.mLongitude = 0;
this.mLatitude = 0;
this.mResults = [0, 0];
this.mLongitude = longitude;
this.mLatitude = latitude;
}
else if (longitude === undefined && latitude === undefined) {
var __args = arguments;
this.mLongitude = 0;
this.mLatitude = 0;
this.mResults = [0, 0];
}
else
throw new Error('invalid overload');
}
/**
* Get the longitude part of this coordinate
*
* @return {number} The longitude part of this coordinate
*/
Coordinate.prototype.getLongitude = function () {
return this.mLongitude;
};
/**
* Set the longitude part of this coordinate
*
* @param {number} longitude The longitude part of this coordinate
*/
Coordinate.prototype.setLongitude = function (longitude) {
this.mLongitude = longitude;
};
/**
* Get the latitude part of this coordinate
*
* @return {number} The latitude part of this coordinate
*/
Coordinate.prototype.getLatitude = function () {
return this.mLatitude;
};
/**
* Set the latitude part of this coordinate
*
* @param {number} latitude The latitude part of this coordinate
*/
Coordinate.prototype.setLatitude = function (latitude) {
this.mLatitude = latitude;
};
/**
* Calculates a bounding box of a certain size arund a coordinate. This is mainly used for a quick check
* in the database for cameras that are close to a coordinate. This function takes a size ion meters as
* a parameter and returns an array of two Coordinate objects. The first Coordinate is the upper left corner
* while the last coordinate is the bottom right corner.
*
* @param {number} side The length of the square side in meters
*
* @return {Coordinate[]} Two cordinates where the first is smaller than the second.
*/
Coordinate.prototype.getBoundingBox = function (side: number) {
var ret = [null, null];
var degLatM:number , degLatM:number, degLongM:number, deltaLat:number, deltaLong:number;
degLatM = 110574.235;
degLongM = 110572.833 * Math.cos(this.mLatitude * this.PI_OVER_180);
deltaLat = side / degLatM;
deltaLong = side / degLongM;
ret[0] = new Coordinate(this.getLongitude() - deltaLong, this.getLatitude() - deltaLat);
ret[1] = new Coordinate(this.getLongitude() + deltaLong, this.getLatitude() + deltaLat);
return ret;
};
/**
* Calculates the distance between two Coordinate objects using the Spherical law of cosines found at:
*
* http://www.movable-type.co.uk/scripts/latlong.html
*
* @param coordinate The coordinate to measure the distance to.
* @return {number} the distance in meters
* @param {Coordinate} dest
*/
Coordinate.prototype.distanceTo = function (dest) {
Coordinate.computeDistanceAndBearing(this.mLatitude, this.mLongitude, dest.getLatitude(), dest.getLongitude(), this.mResults);
return this.mResults[0];
};
/*private*/ Coordinate.computeDistanceAndBearing = function (lat1, lon1, lat2, lon2, results) {
var MAXITERS = 20;
lat1 *= Math.PI / 180.0;
lat2 *= Math.PI / 180.0;
lon1 *= Math.PI / 180.0;
lon2 *= Math.PI / 180.0;
var a = 6378137.0;
var b = 6356752.3142;
var f = (a - b) / a;
var aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);
var L = lon2 - lon1;
var A = 0.0;
var U1 = Math.atan((1.0 - f) * Math.tan(lat1));
var U2 = Math.atan((1.0 - f) * Math.tan(lat2));
var cosU1 = Math.cos(U1);
var cosU2 = Math.cos(U2);
var sinU1 = Math.sin(U1);
var sinU2 = Math.sin(U2);
var cosU1cosU2 = cosU1 * cosU2;
var sinU1sinU2 = sinU1 * sinU2;
var sigma = 0.0;
var deltaSigma = 0.0;
var cosSqAlpha = 0.0;
var cos2SM = 0.0;
var cosSigma = 0.0;
var sinSigma = 0.0;
var cosLambda = 0.0;
var sinLambda = 0.0;
var lambda = L;
for (var iter = 0; iter < MAXITERS; iter++) {
{
var lambdaOrig = lambda;
cosLambda = Math.cos(lambda);
sinLambda = Math.sin(lambda);
var t1 = cosU2 * sinLambda;
var t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda;
var sinSqSigma = t1 * t1 + t2 * t2;
sinSigma = Math.sqrt(sinSqSigma);
cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda;
sigma = Math.atan2(sinSigma, cosSigma);
var sinAlpha = (sinSigma === 0) ? 0.0 : cosU1cosU2 * sinLambda / sinSigma;
cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
cos2SM = (cosSqAlpha === 0) ? 0.0 : cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha;
var uSquared = cosSqAlpha * aSqMinusBSqOverBSq;
A = 1 + (uSquared / 16384.0) * (4096.0 + uSquared * (-768 + uSquared * (320.0 - 175.0 * uSquared)));
var B = (uSquared / 1024.0) * (256.0 + uSquared * (-128.0 + uSquared * (74.0 - 47.0 * uSquared)));
var C = (f / 16.0) * cosSqAlpha * (4.0 + f * (4.0 - 3.0 * cosSqAlpha));
var cos2SMSq = cos2SM * cos2SM;
deltaSigma = B * sinSigma * (cos2SM + (B / 4.0) * (cosSigma * (-1.0 + 2.0 * cos2SMSq) - (B / 6.0) * cos2SM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SMSq)));
lambda = L + (1.0 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SM + C * cosSigma * (-1.0 + 2.0 * cos2SM * cos2SM)));
var delta = (lambda - lambdaOrig) / lambda;
if (Math.abs(delta) < 1.0E-12) {
break;
}
}
;
}
var distance = (b * A * (sigma - deltaSigma));
results[0] = distance;
if (results.length > 1) {
var initialBearing = Math.atan2(cosU2 * sinLambda, cosU1 * sinU2 - sinU1 * cosU2 * cosLambda);
initialBearing *= 180.0 / Math.PI;
results[1] = initialBearing;
if (results.length > 2) {
var finalBearing = Math.atan2(cosU1 * sinLambda, -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda);
finalBearing *= 180.0 / Math.PI;
results[2] = finalBearing;
}
}
};
Coordinate.PI_OVER_180 = 0.017453292;
Coordinate.EARTH_RADIUS = 6371009;
return Coordinate;
}());
Coordinate["__class"] = "Coordinate";