/* Generated from Java with JSweet 3.0.0 - http://www.jsweet.org */ /** * Constructor taking a longitude and a latitude * * @param {number} longitude * @param {number} latitude * @class * @author Linus Helgesson */ var Coordinate = /** @class */ (function () { function Coordinate(longitude, latitude) { if (((typeof longitude === 'number') || longitude === null) && ((typeof latitude === 'number') || latitude === null)) { var __args = arguments; this.mLongitude = 0; this.mLatitude = 0; this.mResults = [0, 0]; this.mLongitude = longitude; this.mLatitude = latitude; } else if (longitude === undefined && latitude === undefined) { var __args = arguments; this.mLongitude = 0; this.mLatitude = 0; this.mResults = [0, 0]; } else throw new Error('invalid overload'); } /** * Get the longitude part of this coordinate * * @return {number} The longitude part of this coordinate */ Coordinate.prototype.getLongitude = function () { return this.mLongitude; }; /** * Set the longitude part of this coordinate * * @param {number} longitude The longitude part of this coordinate */ Coordinate.prototype.setLongitude = function (longitude) { this.mLongitude = longitude; }; /** * Get the latitude part of this coordinate * * @return {number} The latitude part of this coordinate */ Coordinate.prototype.getLatitude = function () { return this.mLatitude; }; /** * Set the latitude part of this coordinate * * @param {number} latitude The latitude part of this coordinate */ Coordinate.prototype.setLatitude = function (latitude) { this.mLatitude = latitude; }; /** * Calculates a bounding box of a certain size arund a coordinate. This is mainly used for a quick check * in the database for cameras that are close to a coordinate. This function takes a size ion meters as * a parameter and returns an array of two Coordinate objects. The first Coordinate is the upper left corner * while the last coordinate is the bottom right corner. * * @param {number} side The length of the square side in meters * * @return {Coordinate[]} Two cordinates where the first is smaller than the second. */ Coordinate.prototype.getBoundingBox = function (side: number) { var ret = [null, null]; var degLatM:number , degLatM:number, degLongM:number, deltaLat:number, deltaLong:number; degLatM = 110574.235; degLongM = 110572.833 * Math.cos(this.mLatitude * this.PI_OVER_180); deltaLat = side / degLatM; deltaLong = side / degLongM; ret[0] = new Coordinate(this.getLongitude() - deltaLong, this.getLatitude() - deltaLat); ret[1] = new Coordinate(this.getLongitude() + deltaLong, this.getLatitude() + deltaLat); return ret; }; /** * Calculates the distance between two Coordinate objects using the Spherical law of cosines found at: * * http://www.movable-type.co.uk/scripts/latlong.html * * @param coordinate The coordinate to measure the distance to. * @return {number} the distance in meters * @param {Coordinate} dest */ Coordinate.prototype.distanceTo = function (dest) { Coordinate.computeDistanceAndBearing(this.mLatitude, this.mLongitude, dest.getLatitude(), dest.getLongitude(), this.mResults); return this.mResults[0]; }; /*private*/ Coordinate.computeDistanceAndBearing = function (lat1, lon1, lat2, lon2, results) { var MAXITERS = 20; lat1 *= Math.PI / 180.0; lat2 *= Math.PI / 180.0; lon1 *= Math.PI / 180.0; lon2 *= Math.PI / 180.0; var a = 6378137.0; var b = 6356752.3142; var f = (a - b) / a; var aSqMinusBSqOverBSq = (a * a - b * b) / (b * b); var L = lon2 - lon1; var A = 0.0; var U1 = Math.atan((1.0 - f) * Math.tan(lat1)); var U2 = Math.atan((1.0 - f) * Math.tan(lat2)); var cosU1 = Math.cos(U1); var cosU2 = Math.cos(U2); var sinU1 = Math.sin(U1); var sinU2 = Math.sin(U2); var cosU1cosU2 = cosU1 * cosU2; var sinU1sinU2 = sinU1 * sinU2; var sigma = 0.0; var deltaSigma = 0.0; var cosSqAlpha = 0.0; var cos2SM = 0.0; var cosSigma = 0.0; var sinSigma = 0.0; var cosLambda = 0.0; var sinLambda = 0.0; var lambda = L; for (var iter = 0; iter < MAXITERS; iter++) { { var lambdaOrig = lambda; cosLambda = Math.cos(lambda); sinLambda = Math.sin(lambda); var t1 = cosU2 * sinLambda; var t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda; var sinSqSigma = t1 * t1 + t2 * t2; sinSigma = Math.sqrt(sinSqSigma); cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; sigma = Math.atan2(sinSigma, cosSigma); var sinAlpha = (sinSigma === 0) ? 0.0 : cosU1cosU2 * sinLambda / sinSigma; cosSqAlpha = 1.0 - sinAlpha * sinAlpha; cos2SM = (cosSqAlpha === 0) ? 0.0 : cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; var uSquared = cosSqAlpha * aSqMinusBSqOverBSq; A = 1 + (uSquared / 16384.0) * (4096.0 + uSquared * (-768 + uSquared * (320.0 - 175.0 * uSquared))); var B = (uSquared / 1024.0) * (256.0 + uSquared * (-128.0 + uSquared * (74.0 - 47.0 * uSquared))); var C = (f / 16.0) * cosSqAlpha * (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); var cos2SMSq = cos2SM * cos2SM; deltaSigma = B * sinSigma * (cos2SM + (B / 4.0) * (cosSigma * (-1.0 + 2.0 * cos2SMSq) - (B / 6.0) * cos2SM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SMSq))); lambda = L + (1.0 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SM + C * cosSigma * (-1.0 + 2.0 * cos2SM * cos2SM))); var delta = (lambda - lambdaOrig) / lambda; if (Math.abs(delta) < 1.0E-12) { break; } } ; } var distance = (b * A * (sigma - deltaSigma)); results[0] = distance; if (results.length > 1) { var initialBearing = Math.atan2(cosU2 * sinLambda, cosU1 * sinU2 - sinU1 * cosU2 * cosLambda); initialBearing *= 180.0 / Math.PI; results[1] = initialBearing; if (results.length > 2) { var finalBearing = Math.atan2(cosU1 * sinLambda, -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda); finalBearing *= 180.0 / Math.PI; results[2] = finalBearing; } } }; Coordinate.PI_OVER_180 = 0.017453292; Coordinate.EARTH_RADIUS = 6371009; return Coordinate; }()); Coordinate["__class"] = "Coordinate";