// Copyright 2004-present Facebook. All Rights Reserved. #pragma once #include #include #include #ifndef RN_EXPORT #define RN_EXPORT __attribute__((visibility("default"))) #endif namespace facebook { namespace react { // JSExecutor functions sometimes take large strings, on the order of // megabytes. Copying these can be expensive. Introducing a // move-only, non-CopyConstructible type will let the compiler ensure // that no copies occur. folly::MoveWrapper should be used when a // large string needs to be curried into a std::function<>, which must // by CopyConstructible. class JSBigString { public: JSBigString() = default; // Not copyable JSBigString(const JSBigString&) = delete; JSBigString& operator=(const JSBigString&) = delete; virtual ~JSBigString() {} virtual bool isAscii() const = 0; // This needs to be a \0 terminated string virtual const char* c_str() const = 0; // Length of the c_str without the NULL byte. virtual size_t size() const = 0; }; // Concrete JSBigString implementation which holds a std::string // instance. class JSBigStdString : public JSBigString { public: JSBigStdString(std::string str, bool isAscii=false) : m_isAscii(isAscii) , m_str(std::move(str)) {} bool isAscii() const override { return m_isAscii; } const char* c_str() const override { return m_str.c_str(); } size_t size() const override { return m_str.size(); } private: bool m_isAscii; std::string m_str; }; // Concrete JSBigString implementation which holds a heap-allocated // buffer, and provides an accessor for writing to it. This can be // used to construct a JSBigString in place, such as by reading from a // file. class JSBigBufferString : public JSBigString { public: JSBigBufferString(size_t size) : m_data(new char[size + 1]) , m_size(size) { // Guarantee nul-termination. The caller is responsible for // filling in the rest of m_data. m_data[m_size] = '\0'; } ~JSBigBufferString() { delete[] m_data; } bool isAscii() const override { return true; } const char* c_str() const override { return m_data; } size_t size() const override { return m_size; } char* data() { return m_data; } private: char* m_data; size_t m_size; }; // JSBigString interface implemented by a file-backed mmap region. class RN_EXPORT JSBigFileString : public JSBigString { public: JSBigFileString(int fd, size_t size, off_t offset = 0) : m_fd {-1} , m_data {nullptr} { folly::checkUnixError(m_fd = dup(fd), "Could not duplicate file descriptor"); // Offsets given to mmap must be page aligend. We abstract away that // restriction by sending a page aligned offset to mmap, and keeping track // of the offset within the page that we must alter the mmap pointer by to // get the final desired offset. if (offset != 0) { const static auto ps = getpagesize(); auto d = lldiv(offset, ps); m_mapOff = d.quot; m_pageOff = d.rem; m_size = size + m_pageOff; } else { m_mapOff = 0; m_pageOff = 0; m_size = size; } } ~JSBigFileString() { if (m_data) { munmap((void *)m_data, m_size); } close(m_fd); } bool isAscii() const override { return true; } const char *c_str() const override { if (!m_data) { m_data = (const char *)mmap(0, m_size, PROT_READ, MAP_SHARED, m_fd, m_mapOff); CHECK(m_data != MAP_FAILED) << " fd: " << m_fd << " size: " << m_size << " offset: " << m_mapOff << " error: " << std::strerror(errno); } return m_data + m_pageOff; } size_t size() const override { return m_size - m_pageOff; } int fd() const { return m_fd; } static std::unique_ptr fromPath(const std::string& sourceURL); private: int m_fd; // The file descriptor being mmaped size_t m_size; // The size of the mmaped region size_t m_pageOff; // The offset in the mmaped region to the data. off_t m_mapOff; // The offset in the file to the mmaped region. mutable const char *m_data; // Pointer to the mmaped region. }; } }