/** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. * * @format * @noflow */ 'use strict'; const invariant = require('invariant'); /** * Memory conservative (mutative) matrix math utilities. Uses "command" * matrices, which are reusable. */ const MatrixMath = { createIdentityMatrix: function() { return [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]; }, createCopy: function(m) { return [ m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11], m[12], m[13], m[14], m[15], ]; }, createOrthographic: function(left, right, bottom, top, near, far) { const a = 2 / (right - left); const b = 2 / (top - bottom); const c = -2 / (far - near); const tx = -(right + left) / (right - left); const ty = -(top + bottom) / (top - bottom); const tz = -(far + near) / (far - near); return [a, 0, 0, 0, 0, b, 0, 0, 0, 0, c, 0, tx, ty, tz, 1]; }, createFrustum: function(left, right, bottom, top, near, far) { const r_width = 1 / (right - left); const r_height = 1 / (top - bottom); const r_depth = 1 / (near - far); const x = 2 * (near * r_width); const y = 2 * (near * r_height); const A = (right + left) * r_width; const B = (top + bottom) * r_height; const C = (far + near) * r_depth; const D = 2 * (far * near * r_depth); return [x, 0, 0, 0, 0, y, 0, 0, A, B, C, -1, 0, 0, D, 0]; }, /** * This create a perspective projection towards negative z * Clipping the z range of [-near, -far] * * @param fovInRadians - field of view in randians */ createPerspective: function(fovInRadians, aspect, near, far) { const h = 1 / Math.tan(fovInRadians / 2); const r_depth = 1 / (near - far); const C = (far + near) * r_depth; const D = 2 * (far * near * r_depth); return [h / aspect, 0, 0, 0, 0, h, 0, 0, 0, 0, C, -1, 0, 0, D, 0]; }, createTranslate2d: function(x, y) { const mat = MatrixMath.createIdentityMatrix(); MatrixMath.reuseTranslate2dCommand(mat, x, y); return mat; }, reuseTranslate2dCommand: function(matrixCommand, x, y) { matrixCommand[12] = x; matrixCommand[13] = y; }, reuseTranslate3dCommand: function(matrixCommand, x, y, z) { matrixCommand[12] = x; matrixCommand[13] = y; matrixCommand[14] = z; }, createScale: function(factor) { const mat = MatrixMath.createIdentityMatrix(); MatrixMath.reuseScaleCommand(mat, factor); return mat; }, reuseScaleCommand: function(matrixCommand, factor) { matrixCommand[0] = factor; matrixCommand[5] = factor; }, reuseScale3dCommand: function(matrixCommand, x, y, z) { matrixCommand[0] = x; matrixCommand[5] = y; matrixCommand[10] = z; }, reusePerspectiveCommand: function(matrixCommand, p) { matrixCommand[11] = -1 / p; }, reuseScaleXCommand(matrixCommand, factor) { matrixCommand[0] = factor; }, reuseScaleYCommand(matrixCommand, factor) { matrixCommand[5] = factor; }, reuseScaleZCommand(matrixCommand, factor) { matrixCommand[10] = factor; }, reuseRotateXCommand: function(matrixCommand, radians) { matrixCommand[5] = Math.cos(radians); matrixCommand[6] = Math.sin(radians); matrixCommand[9] = -Math.sin(radians); matrixCommand[10] = Math.cos(radians); }, reuseRotateYCommand: function(matrixCommand, amount) { matrixCommand[0] = Math.cos(amount); matrixCommand[2] = -Math.sin(amount); matrixCommand[8] = Math.sin(amount); matrixCommand[10] = Math.cos(amount); }, // http://www.w3.org/TR/css3-transforms/#recomposing-to-a-2d-matrix reuseRotateZCommand: function(matrixCommand, radians) { matrixCommand[0] = Math.cos(radians); matrixCommand[1] = Math.sin(radians); matrixCommand[4] = -Math.sin(radians); matrixCommand[5] = Math.cos(radians); }, createRotateZ: function(radians) { const mat = MatrixMath.createIdentityMatrix(); MatrixMath.reuseRotateZCommand(mat, radians); return mat; }, reuseSkewXCommand: function(matrixCommand, radians) { matrixCommand[4] = Math.tan(radians); }, reuseSkewYCommand: function(matrixCommand, radians) { matrixCommand[1] = Math.tan(radians); }, multiplyInto: function(out, a, b) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7]; out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11]; out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15]; out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; }, determinant(matrix: Array): number { const [ m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33, ] = matrix; return ( m03 * m12 * m21 * m30 - m02 * m13 * m21 * m30 - m03 * m11 * m22 * m30 + m01 * m13 * m22 * m30 + m02 * m11 * m23 * m30 - m01 * m12 * m23 * m30 - m03 * m12 * m20 * m31 + m02 * m13 * m20 * m31 + m03 * m10 * m22 * m31 - m00 * m13 * m22 * m31 - m02 * m10 * m23 * m31 + m00 * m12 * m23 * m31 + m03 * m11 * m20 * m32 - m01 * m13 * m20 * m32 - m03 * m10 * m21 * m32 + m00 * m13 * m21 * m32 + m01 * m10 * m23 * m32 - m00 * m11 * m23 * m32 - m02 * m11 * m20 * m33 + m01 * m12 * m20 * m33 + m02 * m10 * m21 * m33 - m00 * m12 * m21 * m33 - m01 * m10 * m22 * m33 + m00 * m11 * m22 * m33 ); }, /** * Inverse of a matrix. Multiplying by the inverse is used in matrix math * instead of division. * * Formula from: * http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm */ inverse(matrix: Array): Array { const det = MatrixMath.determinant(matrix); if (!det) { return matrix; } const [ m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33, ] = matrix; return [ (m12 * m23 * m31 - m13 * m22 * m31 + m13 * m21 * m32 - m11 * m23 * m32 - m12 * m21 * m33 + m11 * m22 * m33) / det, (m03 * m22 * m31 - m02 * m23 * m31 - m03 * m21 * m32 + m01 * m23 * m32 + m02 * m21 * m33 - m01 * m22 * m33) / det, (m02 * m13 * m31 - m03 * m12 * m31 + m03 * m11 * m32 - m01 * m13 * m32 - m02 * m11 * m33 + m01 * m12 * m33) / det, (m03 * m12 * m21 - m02 * m13 * m21 - m03 * m11 * m22 + m01 * m13 * m22 + m02 * m11 * m23 - m01 * m12 * m23) / det, (m13 * m22 * m30 - m12 * m23 * m30 - m13 * m20 * m32 + m10 * m23 * m32 + m12 * m20 * m33 - m10 * m22 * m33) / det, (m02 * m23 * m30 - m03 * m22 * m30 + m03 * m20 * m32 - m00 * m23 * m32 - m02 * m20 * m33 + m00 * m22 * m33) / det, (m03 * m12 * m30 - m02 * m13 * m30 - m03 * m10 * m32 + m00 * m13 * m32 + m02 * m10 * m33 - m00 * m12 * m33) / det, (m02 * m13 * m20 - m03 * m12 * m20 + m03 * m10 * m22 - m00 * m13 * m22 - m02 * m10 * m23 + m00 * m12 * m23) / det, (m11 * m23 * m30 - m13 * m21 * m30 + m13 * m20 * m31 - m10 * m23 * m31 - m11 * m20 * m33 + m10 * m21 * m33) / det, (m03 * m21 * m30 - m01 * m23 * m30 - m03 * m20 * m31 + m00 * m23 * m31 + m01 * m20 * m33 - m00 * m21 * m33) / det, (m01 * m13 * m30 - m03 * m11 * m30 + m03 * m10 * m31 - m00 * m13 * m31 - m01 * m10 * m33 + m00 * m11 * m33) / det, (m03 * m11 * m20 - m01 * m13 * m20 - m03 * m10 * m21 + m00 * m13 * m21 + m01 * m10 * m23 - m00 * m11 * m23) / det, (m12 * m21 * m30 - m11 * m22 * m30 - m12 * m20 * m31 + m10 * m22 * m31 + m11 * m20 * m32 - m10 * m21 * m32) / det, (m01 * m22 * m30 - m02 * m21 * m30 + m02 * m20 * m31 - m00 * m22 * m31 - m01 * m20 * m32 + m00 * m21 * m32) / det, (m02 * m11 * m30 - m01 * m12 * m30 - m02 * m10 * m31 + m00 * m12 * m31 + m01 * m10 * m32 - m00 * m11 * m32) / det, (m01 * m12 * m20 - m02 * m11 * m20 + m02 * m10 * m21 - m00 * m12 * m21 - m01 * m10 * m22 + m00 * m11 * m22) / det, ]; }, /** * Turns columns into rows and rows into columns. */ transpose(m: Array): Array { return [ m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15], ]; }, /** * Based on: http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c */ multiplyVectorByMatrix(v: Array, m: Array): Array { const [vx, vy, vz, vw] = v; return [ vx * m[0] + vy * m[4] + vz * m[8] + vw * m[12], vx * m[1] + vy * m[5] + vz * m[9] + vw * m[13], vx * m[2] + vy * m[6] + vz * m[10] + vw * m[14], vx * m[3] + vy * m[7] + vz * m[11] + vw * m[15], ]; }, /** * From: https://code.google.com/p/webgl-mjs/source/browse/mjs.js */ v3Length(a: Array): number { return Math.sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); }, /** * Based on: https://code.google.com/p/webgl-mjs/source/browse/mjs.js */ v3Normalize(vector: Array, v3Length: number): Array { const im = 1 / (v3Length || MatrixMath.v3Length(vector)); return [vector[0] * im, vector[1] * im, vector[2] * im]; }, /** * The dot product of a and b, two 3-element vectors. * From: https://code.google.com/p/webgl-mjs/source/browse/mjs.js */ v3Dot(a, b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; }, /** * From: * http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp */ v3Combine( a: Array, b: Array, aScale: number, bScale: number, ): Array { return [ aScale * a[0] + bScale * b[0], aScale * a[1] + bScale * b[1], aScale * a[2] + bScale * b[2], ]; }, /** * From: * http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp */ v3Cross(a: Array, b: Array): Array { return [ a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0], ]; }, /** * Based on: * http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ * and: * http://quat.zachbennett.com/ * * Note that this rounds degrees to the thousandth of a degree, due to * floating point errors in the creation of the quaternion. * * Also note that this expects the qw value to be last, not first. * * Also, when researching this, remember that: * yaw === heading === z-axis * pitch === elevation/attitude === y-axis * roll === bank === x-axis */ quaternionToDegreesXYZ(q: Array, matrix, row): Array { const [qx, qy, qz, qw] = q; const qw2 = qw * qw; const qx2 = qx * qx; const qy2 = qy * qy; const qz2 = qz * qz; const test = qx * qy + qz * qw; const unit = qw2 + qx2 + qy2 + qz2; const conv = 180 / Math.PI; if (test > 0.49999 * unit) { return [0, 2 * Math.atan2(qx, qw) * conv, 90]; } if (test < -0.49999 * unit) { return [0, -2 * Math.atan2(qx, qw) * conv, -90]; } return [ MatrixMath.roundTo3Places( Math.atan2(2 * qx * qw - 2 * qy * qz, 1 - 2 * qx2 - 2 * qz2) * conv, ), MatrixMath.roundTo3Places( Math.atan2(2 * qy * qw - 2 * qx * qz, 1 - 2 * qy2 - 2 * qz2) * conv, ), MatrixMath.roundTo3Places(Math.asin(2 * qx * qy + 2 * qz * qw) * conv), ]; }, /** * Based on: * https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/round */ roundTo3Places(n: number): number { const arr = n.toString().split('e'); return Math.round(arr[0] + 'e' + (arr[1] ? +arr[1] - 3 : 3)) * 0.001; }, /** * Decompose a matrix into separate transform values, for use on platforms * where applying a precomposed matrix is not possible, and transforms are * applied in an inflexible ordering (e.g. Android). * * Implementation based on * http://www.w3.org/TR/css3-transforms/#decomposing-a-2d-matrix * http://www.w3.org/TR/css3-transforms/#decomposing-a-3d-matrix * which was based on * http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c */ decomposeMatrix(transformMatrix: Array): ?Object { invariant( transformMatrix.length === 16, 'Matrix decomposition needs a list of 3d matrix values, received %s', transformMatrix, ); // output values let perspective = []; const quaternion = []; const scale = []; const skew = []; const translation = []; // create normalized, 2d array matrix // and normalized 1d array perspectiveMatrix with redefined 4th column if (!transformMatrix[15]) { return; } const matrix = []; const perspectiveMatrix = []; for (let i = 0; i < 4; i++) { matrix.push([]); for (let j = 0; j < 4; j++) { const value = transformMatrix[i * 4 + j] / transformMatrix[15]; matrix[i].push(value); perspectiveMatrix.push(j === 3 ? 0 : value); } } perspectiveMatrix[15] = 1; // test for singularity of upper 3x3 part of the perspective matrix if (!MatrixMath.determinant(perspectiveMatrix)) { return; } // isolate perspective if (matrix[0][3] !== 0 || matrix[1][3] !== 0 || matrix[2][3] !== 0) { // rightHandSide is the right hand side of the equation. // rightHandSide is a vector, or point in 3d space relative to the origin. const rightHandSide = [ matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3], ]; // Solve the equation by inverting perspectiveMatrix and multiplying // rightHandSide by the inverse. const inversePerspectiveMatrix = MatrixMath.inverse(perspectiveMatrix); const transposedInversePerspectiveMatrix = MatrixMath.transpose( inversePerspectiveMatrix, ); perspective = MatrixMath.multiplyVectorByMatrix( rightHandSide, transposedInversePerspectiveMatrix, ); } else { // no perspective perspective[0] = perspective[1] = perspective[2] = 0; perspective[3] = 1; } // translation is simple for (let i = 0; i < 3; i++) { translation[i] = matrix[3][i]; } // Now get scale and shear. // 'row' is a 3 element array of 3 component vectors const row = []; for (let i = 0; i < 3; i++) { row[i] = [matrix[i][0], matrix[i][1], matrix[i][2]]; } // Compute X scale factor and normalize first row. scale[0] = MatrixMath.v3Length(row[0]); row[0] = MatrixMath.v3Normalize(row[0], scale[0]); // Compute XY shear factor and make 2nd row orthogonal to 1st. skew[0] = MatrixMath.v3Dot(row[0], row[1]); row[1] = MatrixMath.v3Combine(row[1], row[0], 1.0, -skew[0]); // Now, compute Y scale and normalize 2nd row. scale[1] = MatrixMath.v3Length(row[1]); row[1] = MatrixMath.v3Normalize(row[1], scale[1]); skew[0] /= scale[1]; // Compute XZ and YZ shears, orthogonalize 3rd row skew[1] = MatrixMath.v3Dot(row[0], row[2]); row[2] = MatrixMath.v3Combine(row[2], row[0], 1.0, -skew[1]); skew[2] = MatrixMath.v3Dot(row[1], row[2]); row[2] = MatrixMath.v3Combine(row[2], row[1], 1.0, -skew[2]); // Next, get Z scale and normalize 3rd row. scale[2] = MatrixMath.v3Length(row[2]); row[2] = MatrixMath.v3Normalize(row[2], scale[2]); skew[1] /= scale[2]; skew[2] /= scale[2]; // At this point, the matrix (in rows) is orthonormal. // Check for a coordinate system flip. If the determinant // is -1, then negate the matrix and the scaling factors. const pdum3 = MatrixMath.v3Cross(row[1], row[2]); if (MatrixMath.v3Dot(row[0], pdum3) < 0) { for (let i = 0; i < 3; i++) { scale[i] *= -1; row[i][0] *= -1; row[i][1] *= -1; row[i][2] *= -1; } } // Now, get the rotations out quaternion[0] = 0.5 * Math.sqrt(Math.max(1 + row[0][0] - row[1][1] - row[2][2], 0)); quaternion[1] = 0.5 * Math.sqrt(Math.max(1 - row[0][0] + row[1][1] - row[2][2], 0)); quaternion[2] = 0.5 * Math.sqrt(Math.max(1 - row[0][0] - row[1][1] + row[2][2], 0)); quaternion[3] = 0.5 * Math.sqrt(Math.max(1 + row[0][0] + row[1][1] + row[2][2], 0)); if (row[2][1] > row[1][2]) { quaternion[0] = -quaternion[0]; } if (row[0][2] > row[2][0]) { quaternion[1] = -quaternion[1]; } if (row[1][0] > row[0][1]) { quaternion[2] = -quaternion[2]; } // correct for occasional, weird Euler synonyms for 2d rotation let rotationDegrees; if ( quaternion[0] < 0.001 && quaternion[0] >= 0 && quaternion[1] < 0.001 && quaternion[1] >= 0 ) { // this is a 2d rotation on the z-axis rotationDegrees = [ 0, 0, MatrixMath.roundTo3Places( (Math.atan2(row[0][1], row[0][0]) * 180) / Math.PI, ), ]; } else { rotationDegrees = MatrixMath.quaternionToDegreesXYZ( quaternion, matrix, row, ); } // expose both base data and convenience names return { rotationDegrees, perspective, quaternion, scale, skew, translation, rotate: rotationDegrees[2], rotateX: rotationDegrees[0], rotateY: rotationDegrees[1], scaleX: scale[0], scaleY: scale[1], translateX: translation[0], translateY: translation[1], }; }, }; module.exports = MatrixMath;