120 lines
5.2 KiB
TypeScript
120 lines
5.2 KiB
TypeScript
|
/** Class for handling coordinates original by Linus Helgesson */
|
||
|
export class Coordinate {
|
||
|
|
||
|
mLatitude:number = 0.0;
|
||
|
mLongitude:number = 0.0;
|
||
|
mResults:any = [0, 0];
|
||
|
PI_OVER_180:number = 0.017453292519943295769236907684886;
|
||
|
EARTH_RADIUS:number = 6371009;
|
||
|
|
||
|
constructor (longitude:number, latitude:number) {
|
||
|
this.mLongitude = longitude;
|
||
|
this.mLatitude = latitude;
|
||
|
}
|
||
|
getLongitude() { return this.mLongitude; }
|
||
|
setLongitude(longitude:number) { this.mLongitude = longitude; }
|
||
|
getLatitude() { return this.mLatitude; }
|
||
|
setLatitude(latitude:number) { this.mLatitude = latitude; }
|
||
|
/**
|
||
|
* Calculates a bounding box of a certain size arund a coordinate.This function takes a size in meters as
|
||
|
* a parameter and returns an array of two Coordinate objects. The first Coordinate is the upper left corner
|
||
|
* while the last coordinate is the bottom right corner.er than the second.
|
||
|
*/
|
||
|
getBoundingBox(side: number) {
|
||
|
var ret:any = [Coordinate, Coordinate];
|
||
|
|
||
|
var degLatM:number , degLatM:number, degLongM:number, deltaLat:number, deltaLong:number;
|
||
|
|
||
|
degLatM = 110574.235;
|
||
|
degLongM = 110572.833 * Math.cos(this.mLatitude * this.PI_OVER_180);
|
||
|
deltaLat = side / degLatM;
|
||
|
deltaLong = side / degLongM;
|
||
|
|
||
|
ret[0] = new Coordinate(this.getLongitude() - deltaLong, this.getLatitude() - deltaLat);
|
||
|
ret[1] = new Coordinate(this.getLongitude() + deltaLong, this.getLatitude() + deltaLat);
|
||
|
|
||
|
return ret;
|
||
|
};
|
||
|
/**
|
||
|
* Calculates the distance between two Coordinate objects using the Spherical law of cosines found at:
|
||
|
*/
|
||
|
distanceTo(dest:Coordinate) {
|
||
|
this.computeDistanceAndBearing(this.mLatitude, this.mLongitude, dest.getLatitude(), dest.getLongitude(), this.mResults);
|
||
|
return this.mResults[0];
|
||
|
};
|
||
|
computeDistanceAndBearing(lat1:number, lon1:number, lat2:number, lon2:number, results:any) {
|
||
|
var MAXITERS = 20;
|
||
|
lat1 *= Math.PI / 180.0;
|
||
|
lat2 *= Math.PI / 180.0;
|
||
|
lon1 *= Math.PI / 180.0;
|
||
|
lon2 *= Math.PI / 180.0;
|
||
|
var a = 6378137.0;
|
||
|
var b = 6356752.3142;
|
||
|
var f = (a - b) / a;
|
||
|
var aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);
|
||
|
var L = lon2 - lon1;
|
||
|
var A = 0.0;
|
||
|
var U1 = Math.atan((1.0 - f) * Math.tan(lat1));
|
||
|
var U2 = Math.atan((1.0 - f) * Math.tan(lat2));
|
||
|
var cosU1 = Math.cos(U1);
|
||
|
var cosU2 = Math.cos(U2);
|
||
|
var sinU1 = Math.sin(U1);
|
||
|
var sinU2 = Math.sin(U2);
|
||
|
var cosU1cosU2 = cosU1 * cosU2;
|
||
|
var sinU1sinU2 = sinU1 * sinU2;
|
||
|
var sigma = 0.0;
|
||
|
var deltaSigma = 0.0;
|
||
|
var cosSqAlpha = 0.0;
|
||
|
var cos2SM = 0.0;
|
||
|
var cosSigma = 0.0;
|
||
|
var sinSigma = 0.0;
|
||
|
var cosLambda = 0.0;
|
||
|
var sinLambda = 0.0;
|
||
|
var lambda = L;
|
||
|
for (var iter = 0; iter < MAXITERS; iter++) {
|
||
|
{
|
||
|
var lambdaOrig = lambda;
|
||
|
cosLambda = Math.cos(lambda);
|
||
|
sinLambda = Math.sin(lambda);
|
||
|
var t1 = cosU2 * sinLambda;
|
||
|
var t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda;
|
||
|
var sinSqSigma = t1 * t1 + t2 * t2;
|
||
|
sinSigma = Math.sqrt(sinSqSigma);
|
||
|
cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda;
|
||
|
sigma = Math.atan2(sinSigma, cosSigma);
|
||
|
var sinAlpha = (sinSigma === 0) ? 0.0 : cosU1cosU2 * sinLambda / sinSigma;
|
||
|
cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
|
||
|
cos2SM = (cosSqAlpha === 0) ? 0.0 : cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha;
|
||
|
var uSquared = cosSqAlpha * aSqMinusBSqOverBSq;
|
||
|
A = 1 + (uSquared / 16384.0) * (4096.0 + uSquared * (-768 + uSquared * (320.0 - 175.0 * uSquared)));
|
||
|
var B = (uSquared / 1024.0) * (256.0 + uSquared * (-128.0 + uSquared * (74.0 - 47.0 * uSquared)));
|
||
|
var C = (f / 16.0) * cosSqAlpha * (4.0 + f * (4.0 - 3.0 * cosSqAlpha));
|
||
|
var cos2SMSq = cos2SM * cos2SM;
|
||
|
deltaSigma = B * sinSigma * (cos2SM + (B / 4.0) * (cosSigma * (-1.0 + 2.0 * cos2SMSq) - (B / 6.0) * cos2SM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SMSq)));
|
||
|
lambda = L + (1.0 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SM + C * cosSigma * (-1.0 + 2.0 * cos2SM * cos2SM)));
|
||
|
var delta = (lambda - lambdaOrig) / lambda;
|
||
|
if (Math.abs(delta) < 1.0E-12) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
;
|
||
|
}
|
||
|
var distance = (b * A * (sigma - deltaSigma));
|
||
|
results[0] = distance;
|
||
|
if (results.length > 1) {
|
||
|
var initialBearing = Math.atan2(cosU2 * sinLambda, cosU1 * sinU2 - sinU1 * cosU2 * cosLambda);
|
||
|
initialBearing *= 180.0 / Math.PI;
|
||
|
results[1] = initialBearing;
|
||
|
if (results.length > 2) {
|
||
|
var finalBearing = Math.atan2(cosU1 * sinLambda, -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda);
|
||
|
finalBearing *= 180.0 / Math.PI;
|
||
|
results[2] = finalBearing;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|