607 lines
18 KiB
JavaScript
607 lines
18 KiB
JavaScript
|
/**
|
||
|
* Copyright (c) 2015-present, Facebook, Inc.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This source code is licensed under the BSD-style license found in the
|
||
|
* LICENSE file in the root directory of this source tree. An additional grant
|
||
|
* of patent rights can be found in the PATENTS file in the same directory.
|
||
|
*
|
||
|
* @providesModule MatrixMath
|
||
|
* @noflow
|
||
|
*/
|
||
|
/* eslint-disable space-infix-ops */
|
||
|
'use strict';
|
||
|
|
||
|
var invariant = require('fbjs/lib/invariant');
|
||
|
|
||
|
/**
|
||
|
* Memory conservative (mutative) matrix math utilities. Uses "command"
|
||
|
* matrices, which are reusable.
|
||
|
*/
|
||
|
var MatrixMath = {
|
||
|
createIdentityMatrix: function() {
|
||
|
return [
|
||
|
1,0,0,0,
|
||
|
0,1,0,0,
|
||
|
0,0,1,0,
|
||
|
0,0,0,1
|
||
|
];
|
||
|
},
|
||
|
|
||
|
createCopy: function(m) {
|
||
|
return [
|
||
|
m[0], m[1], m[2], m[3],
|
||
|
m[4], m[5], m[6], m[7],
|
||
|
m[8], m[9], m[10], m[11],
|
||
|
m[12], m[13], m[14], m[15],
|
||
|
];
|
||
|
},
|
||
|
|
||
|
createOrthographic: function(left, right, bottom, top, near, far) {
|
||
|
var a = 2 / (right - left);
|
||
|
var b = 2 / (top - bottom);
|
||
|
var c = -2 / (far - near);
|
||
|
|
||
|
var tx = -(right + left) / (right - left);
|
||
|
var ty = -(top + bottom) / (top - bottom);
|
||
|
var tz = -(far + near) / (far - near);
|
||
|
|
||
|
return [
|
||
|
a, 0, 0, 0,
|
||
|
0, b, 0, 0,
|
||
|
0, 0, c, 0,
|
||
|
tx, ty, tz, 1
|
||
|
];
|
||
|
},
|
||
|
|
||
|
createFrustum: function(left, right, bottom, top, near, far) {
|
||
|
var r_width = 1 / (right - left);
|
||
|
var r_height = 1 / (top - bottom);
|
||
|
var r_depth = 1 / (near - far);
|
||
|
var x = 2 * (near * r_width);
|
||
|
var y = 2 * (near * r_height);
|
||
|
var A = (right + left) * r_width;
|
||
|
var B = (top + bottom) * r_height;
|
||
|
var C = (far + near) * r_depth;
|
||
|
var D = 2 * (far * near * r_depth);
|
||
|
return [
|
||
|
x, 0, 0, 0,
|
||
|
0, y, 0, 0,
|
||
|
A, B, C,-1,
|
||
|
0, 0, D, 0,
|
||
|
];
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* This create a perspective projection towards negative z
|
||
|
* Clipping the z range of [-near, -far]
|
||
|
*
|
||
|
* @param fovInRadians - field of view in randians
|
||
|
*/
|
||
|
createPerspective: function(fovInRadians, aspect, near, far) {
|
||
|
var h = 1 / Math.tan(fovInRadians / 2);
|
||
|
var r_depth = 1 / (near - far);
|
||
|
var C = (far + near) * r_depth;
|
||
|
var D = 2 * (far * near * r_depth);
|
||
|
return [
|
||
|
h/aspect, 0, 0, 0,
|
||
|
0, h, 0, 0,
|
||
|
0, 0, C,-1,
|
||
|
0, 0, D, 0,
|
||
|
];
|
||
|
},
|
||
|
|
||
|
createTranslate2d: function(x, y) {
|
||
|
var mat = MatrixMath.createIdentityMatrix();
|
||
|
MatrixMath.reuseTranslate2dCommand(mat, x, y);
|
||
|
return mat;
|
||
|
},
|
||
|
|
||
|
reuseTranslate2dCommand: function(matrixCommand, x, y) {
|
||
|
matrixCommand[12] = x;
|
||
|
matrixCommand[13] = y;
|
||
|
},
|
||
|
|
||
|
reuseTranslate3dCommand: function(matrixCommand, x, y, z) {
|
||
|
matrixCommand[12] = x;
|
||
|
matrixCommand[13] = y;
|
||
|
matrixCommand[14] = z;
|
||
|
},
|
||
|
|
||
|
createScale: function(factor) {
|
||
|
var mat = MatrixMath.createIdentityMatrix();
|
||
|
MatrixMath.reuseScaleCommand(mat, factor);
|
||
|
return mat;
|
||
|
},
|
||
|
|
||
|
reuseScaleCommand: function(matrixCommand, factor) {
|
||
|
matrixCommand[0] = factor;
|
||
|
matrixCommand[5] = factor;
|
||
|
},
|
||
|
|
||
|
reuseScale3dCommand: function(matrixCommand, x, y, z) {
|
||
|
matrixCommand[0] = x;
|
||
|
matrixCommand[5] = y;
|
||
|
matrixCommand[10] = z;
|
||
|
},
|
||
|
|
||
|
reusePerspectiveCommand: function(matrixCommand, p) {
|
||
|
matrixCommand[11] = -1 / p;
|
||
|
},
|
||
|
|
||
|
reuseScaleXCommand(matrixCommand, factor) {
|
||
|
matrixCommand[0] = factor;
|
||
|
},
|
||
|
|
||
|
reuseScaleYCommand(matrixCommand, factor) {
|
||
|
matrixCommand[5] = factor;
|
||
|
},
|
||
|
|
||
|
reuseScaleZCommand(matrixCommand, factor) {
|
||
|
matrixCommand[10] = factor;
|
||
|
},
|
||
|
|
||
|
reuseRotateXCommand: function(matrixCommand, radians) {
|
||
|
matrixCommand[5] = Math.cos(radians);
|
||
|
matrixCommand[6] = Math.sin(radians);
|
||
|
matrixCommand[9] = -Math.sin(radians);
|
||
|
matrixCommand[10] = Math.cos(radians);
|
||
|
},
|
||
|
|
||
|
reuseRotateYCommand: function(matrixCommand, amount) {
|
||
|
matrixCommand[0] = Math.cos(amount);
|
||
|
matrixCommand[2] = -Math.sin(amount);
|
||
|
matrixCommand[8] = Math.sin(amount);
|
||
|
matrixCommand[10] = Math.cos(amount);
|
||
|
},
|
||
|
|
||
|
// http://www.w3.org/TR/css3-transforms/#recomposing-to-a-2d-matrix
|
||
|
reuseRotateZCommand: function(matrixCommand, radians) {
|
||
|
matrixCommand[0] = Math.cos(radians);
|
||
|
matrixCommand[1] = Math.sin(radians);
|
||
|
matrixCommand[4] = -Math.sin(radians);
|
||
|
matrixCommand[5] = Math.cos(radians);
|
||
|
},
|
||
|
|
||
|
createRotateZ: function(radians) {
|
||
|
var mat = MatrixMath.createIdentityMatrix();
|
||
|
MatrixMath.reuseRotateZCommand(mat, radians);
|
||
|
return mat;
|
||
|
},
|
||
|
|
||
|
reuseSkewXCommand: function(matrixCommand, radians) {
|
||
|
matrixCommand[4] = Math.tan(radians);
|
||
|
},
|
||
|
|
||
|
reuseSkewYCommand: function(matrixCommand, radians) {
|
||
|
matrixCommand[1] = Math.tan(radians);
|
||
|
},
|
||
|
|
||
|
multiplyInto: function(out, a, b) {
|
||
|
var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
|
||
|
a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
|
||
|
a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
|
||
|
a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
|
||
|
|
||
|
var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
|
||
|
out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
|
||
|
out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
|
||
|
out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
|
||
|
out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
|
||
|
|
||
|
b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
|
||
|
out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
|
||
|
out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
|
||
|
out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
|
||
|
out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
|
||
|
|
||
|
b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
|
||
|
out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
|
||
|
out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
|
||
|
out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
|
||
|
out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
|
||
|
|
||
|
b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
|
||
|
out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
|
||
|
out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
|
||
|
out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
|
||
|
out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
|
||
|
},
|
||
|
|
||
|
determinant(matrix: Array<number>): number {
|
||
|
var [
|
||
|
m00, m01, m02, m03,
|
||
|
m10, m11, m12, m13,
|
||
|
m20, m21, m22, m23,
|
||
|
m30, m31, m32, m33
|
||
|
] = matrix;
|
||
|
return (
|
||
|
m03 * m12 * m21 * m30 - m02 * m13 * m21 * m30 -
|
||
|
m03 * m11 * m22 * m30 + m01 * m13 * m22 * m30 +
|
||
|
m02 * m11 * m23 * m30 - m01 * m12 * m23 * m30 -
|
||
|
m03 * m12 * m20 * m31 + m02 * m13 * m20 * m31 +
|
||
|
m03 * m10 * m22 * m31 - m00 * m13 * m22 * m31 -
|
||
|
m02 * m10 * m23 * m31 + m00 * m12 * m23 * m31 +
|
||
|
m03 * m11 * m20 * m32 - m01 * m13 * m20 * m32 -
|
||
|
m03 * m10 * m21 * m32 + m00 * m13 * m21 * m32 +
|
||
|
m01 * m10 * m23 * m32 - m00 * m11 * m23 * m32 -
|
||
|
m02 * m11 * m20 * m33 + m01 * m12 * m20 * m33 +
|
||
|
m02 * m10 * m21 * m33 - m00 * m12 * m21 * m33 -
|
||
|
m01 * m10 * m22 * m33 + m00 * m11 * m22 * m33
|
||
|
);
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Inverse of a matrix. Multiplying by the inverse is used in matrix math
|
||
|
* instead of division.
|
||
|
*
|
||
|
* Formula from:
|
||
|
* http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
|
||
|
*/
|
||
|
inverse(matrix: Array<number>): Array<number> {
|
||
|
var det = MatrixMath.determinant(matrix);
|
||
|
if (!det) {
|
||
|
return matrix;
|
||
|
}
|
||
|
var [
|
||
|
m00, m01, m02, m03,
|
||
|
m10, m11, m12, m13,
|
||
|
m20, m21, m22, m23,
|
||
|
m30, m31, m32, m33
|
||
|
] = matrix;
|
||
|
return [
|
||
|
(m12*m23*m31 - m13*m22*m31 + m13*m21*m32 - m11*m23*m32 - m12*m21*m33 + m11*m22*m33) / det,
|
||
|
(m03*m22*m31 - m02*m23*m31 - m03*m21*m32 + m01*m23*m32 + m02*m21*m33 - m01*m22*m33) / det,
|
||
|
(m02*m13*m31 - m03*m12*m31 + m03*m11*m32 - m01*m13*m32 - m02*m11*m33 + m01*m12*m33) / det,
|
||
|
(m03*m12*m21 - m02*m13*m21 - m03*m11*m22 + m01*m13*m22 + m02*m11*m23 - m01*m12*m23) / det,
|
||
|
(m13*m22*m30 - m12*m23*m30 - m13*m20*m32 + m10*m23*m32 + m12*m20*m33 - m10*m22*m33) / det,
|
||
|
(m02*m23*m30 - m03*m22*m30 + m03*m20*m32 - m00*m23*m32 - m02*m20*m33 + m00*m22*m33) / det,
|
||
|
(m03*m12*m30 - m02*m13*m30 - m03*m10*m32 + m00*m13*m32 + m02*m10*m33 - m00*m12*m33) / det,
|
||
|
(m02*m13*m20 - m03*m12*m20 + m03*m10*m22 - m00*m13*m22 - m02*m10*m23 + m00*m12*m23) / det,
|
||
|
(m11*m23*m30 - m13*m21*m30 + m13*m20*m31 - m10*m23*m31 - m11*m20*m33 + m10*m21*m33) / det,
|
||
|
(m03*m21*m30 - m01*m23*m30 - m03*m20*m31 + m00*m23*m31 + m01*m20*m33 - m00*m21*m33) / det,
|
||
|
(m01*m13*m30 - m03*m11*m30 + m03*m10*m31 - m00*m13*m31 - m01*m10*m33 + m00*m11*m33) / det,
|
||
|
(m03*m11*m20 - m01*m13*m20 - m03*m10*m21 + m00*m13*m21 + m01*m10*m23 - m00*m11*m23) / det,
|
||
|
(m12*m21*m30 - m11*m22*m30 - m12*m20*m31 + m10*m22*m31 + m11*m20*m32 - m10*m21*m32) / det,
|
||
|
(m01*m22*m30 - m02*m21*m30 + m02*m20*m31 - m00*m22*m31 - m01*m20*m32 + m00*m21*m32) / det,
|
||
|
(m02*m11*m30 - m01*m12*m30 - m02*m10*m31 + m00*m12*m31 + m01*m10*m32 - m00*m11*m32) / det,
|
||
|
(m01*m12*m20 - m02*m11*m20 + m02*m10*m21 - m00*m12*m21 - m01*m10*m22 + m00*m11*m22) / det
|
||
|
];
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Turns columns into rows and rows into columns.
|
||
|
*/
|
||
|
transpose(m: Array<number>): Array<number> {
|
||
|
return [
|
||
|
m[0], m[4], m[8], m[12],
|
||
|
m[1], m[5], m[9], m[13],
|
||
|
m[2], m[6], m[10], m[14],
|
||
|
m[3], m[7], m[11], m[15]
|
||
|
];
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Based on: http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c
|
||
|
*/
|
||
|
multiplyVectorByMatrix(
|
||
|
v: Array<number>,
|
||
|
m: Array<number>
|
||
|
): Array<number> {
|
||
|
var [vx, vy, vz, vw] = v;
|
||
|
return [
|
||
|
vx * m[0] + vy * m[4] + vz * m[8] + vw * m[12],
|
||
|
vx * m[1] + vy * m[5] + vz * m[9] + vw * m[13],
|
||
|
vx * m[2] + vy * m[6] + vz * m[10] + vw * m[14],
|
||
|
vx * m[3] + vy * m[7] + vz * m[11] + vw * m[15]
|
||
|
];
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* From: https://code.google.com/p/webgl-mjs/source/browse/mjs.js
|
||
|
*/
|
||
|
v3Length(a: Array<number>): number {
|
||
|
return Math.sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Based on: https://code.google.com/p/webgl-mjs/source/browse/mjs.js
|
||
|
*/
|
||
|
v3Normalize(
|
||
|
vector: Array<number>,
|
||
|
v3Length: number
|
||
|
): Array<number> {
|
||
|
var im = 1 / (v3Length || MatrixMath.v3Length(vector));
|
||
|
return [
|
||
|
vector[0] * im,
|
||
|
vector[1] * im,
|
||
|
vector[2] * im
|
||
|
];
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* The dot product of a and b, two 3-element vectors.
|
||
|
* From: https://code.google.com/p/webgl-mjs/source/browse/mjs.js
|
||
|
*/
|
||
|
v3Dot(a, b) {
|
||
|
return a[0] * b[0] +
|
||
|
a[1] * b[1] +
|
||
|
a[2] * b[2];
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* From:
|
||
|
* http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
|
||
|
*/
|
||
|
v3Combine(
|
||
|
a: Array<number>,
|
||
|
b: Array<number>,
|
||
|
aScale: number,
|
||
|
bScale: number
|
||
|
): Array<number> {
|
||
|
return [
|
||
|
aScale * a[0] + bScale * b[0],
|
||
|
aScale * a[1] + bScale * b[1],
|
||
|
aScale * a[2] + bScale * b[2]
|
||
|
];
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* From:
|
||
|
* http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
|
||
|
*/
|
||
|
v3Cross(a: Array<number>, b: Array<number>): Array<number> {
|
||
|
return [
|
||
|
a[1] * b[2] - a[2] * b[1],
|
||
|
a[2] * b[0] - a[0] * b[2],
|
||
|
a[0] * b[1] - a[1] * b[0]
|
||
|
];
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Based on:
|
||
|
* http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
|
||
|
* and:
|
||
|
* http://quat.zachbennett.com/
|
||
|
*
|
||
|
* Note that this rounds degrees to the thousandth of a degree, due to
|
||
|
* floating point errors in the creation of the quaternion.
|
||
|
*
|
||
|
* Also note that this expects the qw value to be last, not first.
|
||
|
*
|
||
|
* Also, when researching this, remember that:
|
||
|
* yaw === heading === z-axis
|
||
|
* pitch === elevation/attitude === y-axis
|
||
|
* roll === bank === x-axis
|
||
|
*/
|
||
|
quaternionToDegreesXYZ(q: Array<number>, matrix, row): Array<number> {
|
||
|
var [qx, qy, qz, qw] = q;
|
||
|
var qw2 = qw * qw;
|
||
|
var qx2 = qx * qx;
|
||
|
var qy2 = qy * qy;
|
||
|
var qz2 = qz * qz;
|
||
|
var test = qx * qy + qz * qw;
|
||
|
var unit = qw2 + qx2 + qy2 + qz2;
|
||
|
var conv = 180 / Math.PI;
|
||
|
|
||
|
if (test > 0.49999 * unit) {
|
||
|
return [0, 2 * Math.atan2(qx, qw) * conv, 90];
|
||
|
}
|
||
|
if (test < -0.49999 * unit) {
|
||
|
return [0, -2 * Math.atan2(qx, qw) * conv, -90];
|
||
|
}
|
||
|
|
||
|
return [
|
||
|
MatrixMath.roundTo3Places(
|
||
|
Math.atan2(2*qx*qw-2*qy*qz,1-2*qx2-2*qz2) * conv
|
||
|
),
|
||
|
MatrixMath.roundTo3Places(
|
||
|
Math.atan2(2*qy*qw-2*qx*qz,1-2*qy2-2*qz2) * conv
|
||
|
),
|
||
|
MatrixMath.roundTo3Places(
|
||
|
Math.asin(2*qx*qy+2*qz*qw) * conv
|
||
|
)
|
||
|
];
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Based on:
|
||
|
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/round
|
||
|
*/
|
||
|
roundTo3Places(n: number): number {
|
||
|
var arr = n.toString().split('e');
|
||
|
return Math.round(arr[0] + 'e' + (arr[1] ? (+arr[1] - 3) : 3)) * 0.001;
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Decompose a matrix into separate transform values, for use on platforms
|
||
|
* where applying a precomposed matrix is not possible, and transforms are
|
||
|
* applied in an inflexible ordering (e.g. Android).
|
||
|
*
|
||
|
* Implementation based on
|
||
|
* http://www.w3.org/TR/css3-transforms/#decomposing-a-2d-matrix
|
||
|
* http://www.w3.org/TR/css3-transforms/#decomposing-a-3d-matrix
|
||
|
* which was based on
|
||
|
* http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c
|
||
|
*/
|
||
|
decomposeMatrix(transformMatrix: Array<number>): ?Object {
|
||
|
|
||
|
invariant(
|
||
|
transformMatrix.length === 16,
|
||
|
'Matrix decomposition needs a list of 3d matrix values, received %s',
|
||
|
transformMatrix
|
||
|
);
|
||
|
|
||
|
// output values
|
||
|
var perspective = [];
|
||
|
var quaternion = [];
|
||
|
var scale = [];
|
||
|
var skew = [];
|
||
|
var translation = [];
|
||
|
|
||
|
// create normalized, 2d array matrix
|
||
|
// and normalized 1d array perspectiveMatrix with redefined 4th column
|
||
|
if (!transformMatrix[15]) {
|
||
|
return;
|
||
|
}
|
||
|
var matrix = [];
|
||
|
var perspectiveMatrix = [];
|
||
|
for (var i = 0; i < 4; i++) {
|
||
|
matrix.push([]);
|
||
|
for (var j = 0; j < 4; j++) {
|
||
|
var value = transformMatrix[(i * 4) + j] / transformMatrix[15];
|
||
|
matrix[i].push(value);
|
||
|
perspectiveMatrix.push(j === 3 ? 0 : value);
|
||
|
}
|
||
|
}
|
||
|
perspectiveMatrix[15] = 1;
|
||
|
|
||
|
// test for singularity of upper 3x3 part of the perspective matrix
|
||
|
if (!MatrixMath.determinant(perspectiveMatrix)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// isolate perspective
|
||
|
if (matrix[0][3] !== 0 || matrix[1][3] !== 0 || matrix[2][3] !== 0) {
|
||
|
// rightHandSide is the right hand side of the equation.
|
||
|
// rightHandSide is a vector, or point in 3d space relative to the origin.
|
||
|
var rightHandSide = [
|
||
|
matrix[0][3],
|
||
|
matrix[1][3],
|
||
|
matrix[2][3],
|
||
|
matrix[3][3]
|
||
|
];
|
||
|
|
||
|
// Solve the equation by inverting perspectiveMatrix and multiplying
|
||
|
// rightHandSide by the inverse.
|
||
|
var inversePerspectiveMatrix = MatrixMath.inverse(
|
||
|
perspectiveMatrix
|
||
|
);
|
||
|
var transposedInversePerspectiveMatrix = MatrixMath.transpose(
|
||
|
inversePerspectiveMatrix
|
||
|
);
|
||
|
var perspective = MatrixMath.multiplyVectorByMatrix(
|
||
|
rightHandSide,
|
||
|
transposedInversePerspectiveMatrix
|
||
|
);
|
||
|
} else {
|
||
|
// no perspective
|
||
|
perspective[0] = perspective[1] = perspective[2] = 0;
|
||
|
perspective[3] = 1;
|
||
|
}
|
||
|
|
||
|
// translation is simple
|
||
|
for (var i = 0; i < 3; i++) {
|
||
|
translation[i] = matrix[3][i];
|
||
|
}
|
||
|
|
||
|
// Now get scale and shear.
|
||
|
// 'row' is a 3 element array of 3 component vectors
|
||
|
var row = [];
|
||
|
for (i = 0; i < 3; i++) {
|
||
|
row[i] = [
|
||
|
matrix[i][0],
|
||
|
matrix[i][1],
|
||
|
matrix[i][2]
|
||
|
];
|
||
|
}
|
||
|
|
||
|
// Compute X scale factor and normalize first row.
|
||
|
scale[0] = MatrixMath.v3Length(row[0]);
|
||
|
row[0] = MatrixMath.v3Normalize(row[0], scale[0]);
|
||
|
|
||
|
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
||
|
skew[0] = MatrixMath.v3Dot(row[0], row[1]);
|
||
|
row[1] = MatrixMath.v3Combine(row[1], row[0], 1.0, -skew[0]);
|
||
|
|
||
|
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
||
|
skew[0] = MatrixMath.v3Dot(row[0], row[1]);
|
||
|
row[1] = MatrixMath.v3Combine(row[1], row[0], 1.0, -skew[0]);
|
||
|
|
||
|
// Now, compute Y scale and normalize 2nd row.
|
||
|
scale[1] = MatrixMath.v3Length(row[1]);
|
||
|
row[1] = MatrixMath.v3Normalize(row[1], scale[1]);
|
||
|
skew[0] /= scale[1];
|
||
|
|
||
|
// Compute XZ and YZ shears, orthogonalize 3rd row
|
||
|
skew[1] = MatrixMath.v3Dot(row[0], row[2]);
|
||
|
row[2] = MatrixMath.v3Combine(row[2], row[0], 1.0, -skew[1]);
|
||
|
skew[2] = MatrixMath.v3Dot(row[1], row[2]);
|
||
|
row[2] = MatrixMath.v3Combine(row[2], row[1], 1.0, -skew[2]);
|
||
|
|
||
|
// Next, get Z scale and normalize 3rd row.
|
||
|
scale[2] = MatrixMath.v3Length(row[2]);
|
||
|
row[2] = MatrixMath.v3Normalize(row[2], scale[2]);
|
||
|
skew[1] /= scale[2];
|
||
|
skew[2] /= scale[2];
|
||
|
|
||
|
// At this point, the matrix (in rows) is orthonormal.
|
||
|
// Check for a coordinate system flip. If the determinant
|
||
|
// is -1, then negate the matrix and the scaling factors.
|
||
|
var pdum3 = MatrixMath.v3Cross(row[1], row[2]);
|
||
|
if (MatrixMath.v3Dot(row[0], pdum3) < 0) {
|
||
|
for (i = 0; i < 3; i++) {
|
||
|
scale[i] *= -1;
|
||
|
row[i][0] *= -1;
|
||
|
row[i][1] *= -1;
|
||
|
row[i][2] *= -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Now, get the rotations out
|
||
|
quaternion[0] =
|
||
|
0.5 * Math.sqrt(Math.max(1 + row[0][0] - row[1][1] - row[2][2], 0));
|
||
|
quaternion[1] =
|
||
|
0.5 * Math.sqrt(Math.max(1 - row[0][0] + row[1][1] - row[2][2], 0));
|
||
|
quaternion[2] =
|
||
|
0.5 * Math.sqrt(Math.max(1 - row[0][0] - row[1][1] + row[2][2], 0));
|
||
|
quaternion[3] =
|
||
|
0.5 * Math.sqrt(Math.max(1 + row[0][0] + row[1][1] + row[2][2], 0));
|
||
|
|
||
|
if (row[2][1] > row[1][2]) {
|
||
|
quaternion[0] = -quaternion[0];
|
||
|
}
|
||
|
if (row[0][2] > row[2][0]) {
|
||
|
quaternion[1] = -quaternion[1];
|
||
|
}
|
||
|
if (row[1][0] > row[0][1]) {
|
||
|
quaternion[2] = -quaternion[2];
|
||
|
}
|
||
|
|
||
|
// correct for occasional, weird Euler synonyms for 2d rotation
|
||
|
var rotationDegrees;
|
||
|
if (
|
||
|
quaternion[0] < 0.001 && quaternion[0] >= 0 &&
|
||
|
quaternion[1] < 0.001 && quaternion[1] >= 0
|
||
|
) {
|
||
|
// this is a 2d rotation on the z-axis
|
||
|
rotationDegrees = [0, 0, MatrixMath.roundTo3Places(
|
||
|
Math.atan2(row[0][1], row[0][0]) * 180 / Math.PI
|
||
|
)];
|
||
|
} else {
|
||
|
rotationDegrees = MatrixMath.quaternionToDegreesXYZ(quaternion, matrix, row);
|
||
|
}
|
||
|
|
||
|
// expose both base data and convenience names
|
||
|
return {
|
||
|
rotationDegrees,
|
||
|
perspective,
|
||
|
quaternion,
|
||
|
scale,
|
||
|
skew,
|
||
|
translation,
|
||
|
|
||
|
rotate: rotationDegrees[2],
|
||
|
rotateX: rotationDegrees[0],
|
||
|
rotateY: rotationDegrees[1],
|
||
|
scaleX: scale[0],
|
||
|
scaleY: scale[1],
|
||
|
translateX: translation[0],
|
||
|
translateY: translation[1],
|
||
|
};
|
||
|
},
|
||
|
|
||
|
};
|
||
|
|
||
|
module.exports = MatrixMath;
|