GT2/GT2-Android/node_modules/react-native/Libraries/Utilities/MatrixMath.js

607 lines
18 KiB
JavaScript
Raw Normal View History

/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*
* @providesModule MatrixMath
* @noflow
*/
/* eslint-disable space-infix-ops */
'use strict';
var invariant = require('fbjs/lib/invariant');
/**
* Memory conservative (mutative) matrix math utilities. Uses "command"
* matrices, which are reusable.
*/
var MatrixMath = {
createIdentityMatrix: function() {
return [
1,0,0,0,
0,1,0,0,
0,0,1,0,
0,0,0,1
];
},
createCopy: function(m) {
return [
m[0], m[1], m[2], m[3],
m[4], m[5], m[6], m[7],
m[8], m[9], m[10], m[11],
m[12], m[13], m[14], m[15],
];
},
createOrthographic: function(left, right, bottom, top, near, far) {
var a = 2 / (right - left);
var b = 2 / (top - bottom);
var c = -2 / (far - near);
var tx = -(right + left) / (right - left);
var ty = -(top + bottom) / (top - bottom);
var tz = -(far + near) / (far - near);
return [
a, 0, 0, 0,
0, b, 0, 0,
0, 0, c, 0,
tx, ty, tz, 1
];
},
createFrustum: function(left, right, bottom, top, near, far) {
var r_width = 1 / (right - left);
var r_height = 1 / (top - bottom);
var r_depth = 1 / (near - far);
var x = 2 * (near * r_width);
var y = 2 * (near * r_height);
var A = (right + left) * r_width;
var B = (top + bottom) * r_height;
var C = (far + near) * r_depth;
var D = 2 * (far * near * r_depth);
return [
x, 0, 0, 0,
0, y, 0, 0,
A, B, C,-1,
0, 0, D, 0,
];
},
/**
* This create a perspective projection towards negative z
* Clipping the z range of [-near, -far]
*
* @param fovInRadians - field of view in randians
*/
createPerspective: function(fovInRadians, aspect, near, far) {
var h = 1 / Math.tan(fovInRadians / 2);
var r_depth = 1 / (near - far);
var C = (far + near) * r_depth;
var D = 2 * (far * near * r_depth);
return [
h/aspect, 0, 0, 0,
0, h, 0, 0,
0, 0, C,-1,
0, 0, D, 0,
];
},
createTranslate2d: function(x, y) {
var mat = MatrixMath.createIdentityMatrix();
MatrixMath.reuseTranslate2dCommand(mat, x, y);
return mat;
},
reuseTranslate2dCommand: function(matrixCommand, x, y) {
matrixCommand[12] = x;
matrixCommand[13] = y;
},
reuseTranslate3dCommand: function(matrixCommand, x, y, z) {
matrixCommand[12] = x;
matrixCommand[13] = y;
matrixCommand[14] = z;
},
createScale: function(factor) {
var mat = MatrixMath.createIdentityMatrix();
MatrixMath.reuseScaleCommand(mat, factor);
return mat;
},
reuseScaleCommand: function(matrixCommand, factor) {
matrixCommand[0] = factor;
matrixCommand[5] = factor;
},
reuseScale3dCommand: function(matrixCommand, x, y, z) {
matrixCommand[0] = x;
matrixCommand[5] = y;
matrixCommand[10] = z;
},
reusePerspectiveCommand: function(matrixCommand, p) {
matrixCommand[11] = -1 / p;
},
reuseScaleXCommand(matrixCommand, factor) {
matrixCommand[0] = factor;
},
reuseScaleYCommand(matrixCommand, factor) {
matrixCommand[5] = factor;
},
reuseScaleZCommand(matrixCommand, factor) {
matrixCommand[10] = factor;
},
reuseRotateXCommand: function(matrixCommand, radians) {
matrixCommand[5] = Math.cos(radians);
matrixCommand[6] = Math.sin(radians);
matrixCommand[9] = -Math.sin(radians);
matrixCommand[10] = Math.cos(radians);
},
reuseRotateYCommand: function(matrixCommand, amount) {
matrixCommand[0] = Math.cos(amount);
matrixCommand[2] = -Math.sin(amount);
matrixCommand[8] = Math.sin(amount);
matrixCommand[10] = Math.cos(amount);
},
// http://www.w3.org/TR/css3-transforms/#recomposing-to-a-2d-matrix
reuseRotateZCommand: function(matrixCommand, radians) {
matrixCommand[0] = Math.cos(radians);
matrixCommand[1] = Math.sin(radians);
matrixCommand[4] = -Math.sin(radians);
matrixCommand[5] = Math.cos(radians);
},
createRotateZ: function(radians) {
var mat = MatrixMath.createIdentityMatrix();
MatrixMath.reuseRotateZCommand(mat, radians);
return mat;
},
reuseSkewXCommand: function(matrixCommand, radians) {
matrixCommand[4] = Math.tan(radians);
},
reuseSkewYCommand: function(matrixCommand, radians) {
matrixCommand[1] = Math.tan(radians);
},
multiplyInto: function(out, a, b) {
var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
},
determinant(matrix: Array<number>): number {
var [
m00, m01, m02, m03,
m10, m11, m12, m13,
m20, m21, m22, m23,
m30, m31, m32, m33
] = matrix;
return (
m03 * m12 * m21 * m30 - m02 * m13 * m21 * m30 -
m03 * m11 * m22 * m30 + m01 * m13 * m22 * m30 +
m02 * m11 * m23 * m30 - m01 * m12 * m23 * m30 -
m03 * m12 * m20 * m31 + m02 * m13 * m20 * m31 +
m03 * m10 * m22 * m31 - m00 * m13 * m22 * m31 -
m02 * m10 * m23 * m31 + m00 * m12 * m23 * m31 +
m03 * m11 * m20 * m32 - m01 * m13 * m20 * m32 -
m03 * m10 * m21 * m32 + m00 * m13 * m21 * m32 +
m01 * m10 * m23 * m32 - m00 * m11 * m23 * m32 -
m02 * m11 * m20 * m33 + m01 * m12 * m20 * m33 +
m02 * m10 * m21 * m33 - m00 * m12 * m21 * m33 -
m01 * m10 * m22 * m33 + m00 * m11 * m22 * m33
);
},
/**
* Inverse of a matrix. Multiplying by the inverse is used in matrix math
* instead of division.
*
* Formula from:
* http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
*/
inverse(matrix: Array<number>): Array<number> {
var det = MatrixMath.determinant(matrix);
if (!det) {
return matrix;
}
var [
m00, m01, m02, m03,
m10, m11, m12, m13,
m20, m21, m22, m23,
m30, m31, m32, m33
] = matrix;
return [
(m12*m23*m31 - m13*m22*m31 + m13*m21*m32 - m11*m23*m32 - m12*m21*m33 + m11*m22*m33) / det,
(m03*m22*m31 - m02*m23*m31 - m03*m21*m32 + m01*m23*m32 + m02*m21*m33 - m01*m22*m33) / det,
(m02*m13*m31 - m03*m12*m31 + m03*m11*m32 - m01*m13*m32 - m02*m11*m33 + m01*m12*m33) / det,
(m03*m12*m21 - m02*m13*m21 - m03*m11*m22 + m01*m13*m22 + m02*m11*m23 - m01*m12*m23) / det,
(m13*m22*m30 - m12*m23*m30 - m13*m20*m32 + m10*m23*m32 + m12*m20*m33 - m10*m22*m33) / det,
(m02*m23*m30 - m03*m22*m30 + m03*m20*m32 - m00*m23*m32 - m02*m20*m33 + m00*m22*m33) / det,
(m03*m12*m30 - m02*m13*m30 - m03*m10*m32 + m00*m13*m32 + m02*m10*m33 - m00*m12*m33) / det,
(m02*m13*m20 - m03*m12*m20 + m03*m10*m22 - m00*m13*m22 - m02*m10*m23 + m00*m12*m23) / det,
(m11*m23*m30 - m13*m21*m30 + m13*m20*m31 - m10*m23*m31 - m11*m20*m33 + m10*m21*m33) / det,
(m03*m21*m30 - m01*m23*m30 - m03*m20*m31 + m00*m23*m31 + m01*m20*m33 - m00*m21*m33) / det,
(m01*m13*m30 - m03*m11*m30 + m03*m10*m31 - m00*m13*m31 - m01*m10*m33 + m00*m11*m33) / det,
(m03*m11*m20 - m01*m13*m20 - m03*m10*m21 + m00*m13*m21 + m01*m10*m23 - m00*m11*m23) / det,
(m12*m21*m30 - m11*m22*m30 - m12*m20*m31 + m10*m22*m31 + m11*m20*m32 - m10*m21*m32) / det,
(m01*m22*m30 - m02*m21*m30 + m02*m20*m31 - m00*m22*m31 - m01*m20*m32 + m00*m21*m32) / det,
(m02*m11*m30 - m01*m12*m30 - m02*m10*m31 + m00*m12*m31 + m01*m10*m32 - m00*m11*m32) / det,
(m01*m12*m20 - m02*m11*m20 + m02*m10*m21 - m00*m12*m21 - m01*m10*m22 + m00*m11*m22) / det
];
},
/**
* Turns columns into rows and rows into columns.
*/
transpose(m: Array<number>): Array<number> {
return [
m[0], m[4], m[8], m[12],
m[1], m[5], m[9], m[13],
m[2], m[6], m[10], m[14],
m[3], m[7], m[11], m[15]
];
},
/**
* Based on: http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c
*/
multiplyVectorByMatrix(
v: Array<number>,
m: Array<number>
): Array<number> {
var [vx, vy, vz, vw] = v;
return [
vx * m[0] + vy * m[4] + vz * m[8] + vw * m[12],
vx * m[1] + vy * m[5] + vz * m[9] + vw * m[13],
vx * m[2] + vy * m[6] + vz * m[10] + vw * m[14],
vx * m[3] + vy * m[7] + vz * m[11] + vw * m[15]
];
},
/**
* From: https://code.google.com/p/webgl-mjs/source/browse/mjs.js
*/
v3Length(a: Array<number>): number {
return Math.sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
},
/**
* Based on: https://code.google.com/p/webgl-mjs/source/browse/mjs.js
*/
v3Normalize(
vector: Array<number>,
v3Length: number
): Array<number> {
var im = 1 / (v3Length || MatrixMath.v3Length(vector));
return [
vector[0] * im,
vector[1] * im,
vector[2] * im
];
},
/**
* The dot product of a and b, two 3-element vectors.
* From: https://code.google.com/p/webgl-mjs/source/browse/mjs.js
*/
v3Dot(a, b) {
return a[0] * b[0] +
a[1] * b[1] +
a[2] * b[2];
},
/**
* From:
* http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
*/
v3Combine(
a: Array<number>,
b: Array<number>,
aScale: number,
bScale: number
): Array<number> {
return [
aScale * a[0] + bScale * b[0],
aScale * a[1] + bScale * b[1],
aScale * a[2] + bScale * b[2]
];
},
/**
* From:
* http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
*/
v3Cross(a: Array<number>, b: Array<number>): Array<number> {
return [
a[1] * b[2] - a[2] * b[1],
a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]
];
},
/**
* Based on:
* http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
* and:
* http://quat.zachbennett.com/
*
* Note that this rounds degrees to the thousandth of a degree, due to
* floating point errors in the creation of the quaternion.
*
* Also note that this expects the qw value to be last, not first.
*
* Also, when researching this, remember that:
* yaw === heading === z-axis
* pitch === elevation/attitude === y-axis
* roll === bank === x-axis
*/
quaternionToDegreesXYZ(q: Array<number>, matrix, row): Array<number> {
var [qx, qy, qz, qw] = q;
var qw2 = qw * qw;
var qx2 = qx * qx;
var qy2 = qy * qy;
var qz2 = qz * qz;
var test = qx * qy + qz * qw;
var unit = qw2 + qx2 + qy2 + qz2;
var conv = 180 / Math.PI;
if (test > 0.49999 * unit) {
return [0, 2 * Math.atan2(qx, qw) * conv, 90];
}
if (test < -0.49999 * unit) {
return [0, -2 * Math.atan2(qx, qw) * conv, -90];
}
return [
MatrixMath.roundTo3Places(
Math.atan2(2*qx*qw-2*qy*qz,1-2*qx2-2*qz2) * conv
),
MatrixMath.roundTo3Places(
Math.atan2(2*qy*qw-2*qx*qz,1-2*qy2-2*qz2) * conv
),
MatrixMath.roundTo3Places(
Math.asin(2*qx*qy+2*qz*qw) * conv
)
];
},
/**
* Based on:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/round
*/
roundTo3Places(n: number): number {
var arr = n.toString().split('e');
return Math.round(arr[0] + 'e' + (arr[1] ? (+arr[1] - 3) : 3)) * 0.001;
},
/**
* Decompose a matrix into separate transform values, for use on platforms
* where applying a precomposed matrix is not possible, and transforms are
* applied in an inflexible ordering (e.g. Android).
*
* Implementation based on
* http://www.w3.org/TR/css3-transforms/#decomposing-a-2d-matrix
* http://www.w3.org/TR/css3-transforms/#decomposing-a-3d-matrix
* which was based on
* http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c
*/
decomposeMatrix(transformMatrix: Array<number>): ?Object {
invariant(
transformMatrix.length === 16,
'Matrix decomposition needs a list of 3d matrix values, received %s',
transformMatrix
);
// output values
var perspective = [];
var quaternion = [];
var scale = [];
var skew = [];
var translation = [];
// create normalized, 2d array matrix
// and normalized 1d array perspectiveMatrix with redefined 4th column
if (!transformMatrix[15]) {
return;
}
var matrix = [];
var perspectiveMatrix = [];
for (var i = 0; i < 4; i++) {
matrix.push([]);
for (var j = 0; j < 4; j++) {
var value = transformMatrix[(i * 4) + j] / transformMatrix[15];
matrix[i].push(value);
perspectiveMatrix.push(j === 3 ? 0 : value);
}
}
perspectiveMatrix[15] = 1;
// test for singularity of upper 3x3 part of the perspective matrix
if (!MatrixMath.determinant(perspectiveMatrix)) {
return;
}
// isolate perspective
if (matrix[0][3] !== 0 || matrix[1][3] !== 0 || matrix[2][3] !== 0) {
// rightHandSide is the right hand side of the equation.
// rightHandSide is a vector, or point in 3d space relative to the origin.
var rightHandSide = [
matrix[0][3],
matrix[1][3],
matrix[2][3],
matrix[3][3]
];
// Solve the equation by inverting perspectiveMatrix and multiplying
// rightHandSide by the inverse.
var inversePerspectiveMatrix = MatrixMath.inverse(
perspectiveMatrix
);
var transposedInversePerspectiveMatrix = MatrixMath.transpose(
inversePerspectiveMatrix
);
var perspective = MatrixMath.multiplyVectorByMatrix(
rightHandSide,
transposedInversePerspectiveMatrix
);
} else {
// no perspective
perspective[0] = perspective[1] = perspective[2] = 0;
perspective[3] = 1;
}
// translation is simple
for (var i = 0; i < 3; i++) {
translation[i] = matrix[3][i];
}
// Now get scale and shear.
// 'row' is a 3 element array of 3 component vectors
var row = [];
for (i = 0; i < 3; i++) {
row[i] = [
matrix[i][0],
matrix[i][1],
matrix[i][2]
];
}
// Compute X scale factor and normalize first row.
scale[0] = MatrixMath.v3Length(row[0]);
row[0] = MatrixMath.v3Normalize(row[0], scale[0]);
// Compute XY shear factor and make 2nd row orthogonal to 1st.
skew[0] = MatrixMath.v3Dot(row[0], row[1]);
row[1] = MatrixMath.v3Combine(row[1], row[0], 1.0, -skew[0]);
// Compute XY shear factor and make 2nd row orthogonal to 1st.
skew[0] = MatrixMath.v3Dot(row[0], row[1]);
row[1] = MatrixMath.v3Combine(row[1], row[0], 1.0, -skew[0]);
// Now, compute Y scale and normalize 2nd row.
scale[1] = MatrixMath.v3Length(row[1]);
row[1] = MatrixMath.v3Normalize(row[1], scale[1]);
skew[0] /= scale[1];
// Compute XZ and YZ shears, orthogonalize 3rd row
skew[1] = MatrixMath.v3Dot(row[0], row[2]);
row[2] = MatrixMath.v3Combine(row[2], row[0], 1.0, -skew[1]);
skew[2] = MatrixMath.v3Dot(row[1], row[2]);
row[2] = MatrixMath.v3Combine(row[2], row[1], 1.0, -skew[2]);
// Next, get Z scale and normalize 3rd row.
scale[2] = MatrixMath.v3Length(row[2]);
row[2] = MatrixMath.v3Normalize(row[2], scale[2]);
skew[1] /= scale[2];
skew[2] /= scale[2];
// At this point, the matrix (in rows) is orthonormal.
// Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors.
var pdum3 = MatrixMath.v3Cross(row[1], row[2]);
if (MatrixMath.v3Dot(row[0], pdum3) < 0) {
for (i = 0; i < 3; i++) {
scale[i] *= -1;
row[i][0] *= -1;
row[i][1] *= -1;
row[i][2] *= -1;
}
}
// Now, get the rotations out
quaternion[0] =
0.5 * Math.sqrt(Math.max(1 + row[0][0] - row[1][1] - row[2][2], 0));
quaternion[1] =
0.5 * Math.sqrt(Math.max(1 - row[0][0] + row[1][1] - row[2][2], 0));
quaternion[2] =
0.5 * Math.sqrt(Math.max(1 - row[0][0] - row[1][1] + row[2][2], 0));
quaternion[3] =
0.5 * Math.sqrt(Math.max(1 + row[0][0] + row[1][1] + row[2][2], 0));
if (row[2][1] > row[1][2]) {
quaternion[0] = -quaternion[0];
}
if (row[0][2] > row[2][0]) {
quaternion[1] = -quaternion[1];
}
if (row[1][0] > row[0][1]) {
quaternion[2] = -quaternion[2];
}
// correct for occasional, weird Euler synonyms for 2d rotation
var rotationDegrees;
if (
quaternion[0] < 0.001 && quaternion[0] >= 0 &&
quaternion[1] < 0.001 && quaternion[1] >= 0
) {
// this is a 2d rotation on the z-axis
rotationDegrees = [0, 0, MatrixMath.roundTo3Places(
Math.atan2(row[0][1], row[0][0]) * 180 / Math.PI
)];
} else {
rotationDegrees = MatrixMath.quaternionToDegreesXYZ(quaternion, matrix, row);
}
// expose both base data and convenience names
return {
rotationDegrees,
perspective,
quaternion,
scale,
skew,
translation,
rotate: rotationDegrees[2],
rotateX: rotationDegrees[0],
rotateY: rotationDegrees[1],
scaleX: scale[0],
scaleY: scale[1],
translateX: translation[0],
translateY: translation[1],
};
},
};
module.exports = MatrixMath;