GT2/Ejectable/node_modules/react-native/ReactCommon/fabric/components/view/conversions.h

711 lines
20 KiB
C
Raw Normal View History

2021-08-16 00:14:59 +00:00
/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#pragma once
#include <better/map.h>
#include <folly/Conv.h>
#include <folly/dynamic.h>
#include <glog/logging.h>
#include <react/components/view/primitives.h>
#include <react/core/LayoutMetrics.h>
#include <react/graphics/Geometry.h>
#include <react/graphics/Transform.h>
#include <stdlib.h>
#include <yoga/YGEnums.h>
#include <yoga/YGNode.h>
#include <yoga/Yoga.h>
#include <cmath>
namespace facebook {
namespace react {
/*
* Yoga's `float` <-> React Native's `Float` (can be `double` or `float`)
*
* Regular Yoga `float` values represent some onscreen-position-related values.
* They can be real numbers or special value `YGUndefined` (which actually is
* `NaN`). Conceptually, layout computation process inside Yoga should never
* produce `NaN` values from non-`NaN` values. At the same time, ` YGUndefined`
* values have special "no limit" meaning in Yoga, therefore ` YGUndefined`
* usually corresponds to `Infinity` value.
*/
inline Float floatFromYogaFloat(float value) {
static_assert(
YGUndefined != YGUndefined,
"The code of this function assumes that YGUndefined is NaN.");
if (std::isnan(value) /* means: `value == YGUndefined` */) {
return std::numeric_limits<Float>::infinity();
}
return (Float)value;
}
inline float yogaFloatFromFloat(Float value) {
if (std::isinf(value)) {
return YGUndefined;
}
return (float)value;
}
/*
* `YGFloatOptional` <-> React Native's `Float`
*
* `YGFloatOptional` represents optional dimensionless float values in Yoga
* Style object (e.g. `flex`). The most suitable analogy to empty
* `YGFloatOptional` is `NaN` value.
* `YGFloatOptional` values are usually parsed from some outside data source
* which usually has some special corresponding representation for an empty
* value.
*/
inline Float floatFromYogaOptionalFloat(YGFloatOptional value) {
if (value.isUndefined()) {
return std::numeric_limits<Float>::quiet_NaN();
}
return floatFromYogaFloat(value.unwrap());
}
inline YGFloatOptional yogaOptionalFloatFromFloat(Float value) {
if (std::isnan(value)) {
return YGFloatOptional();
}
return YGFloatOptional((float)value);
}
/*
* `YGValue` <-> `React Native's `Float`
*
* `YGValue` represents optional dimensionful (a real number and some unit, e.g.
* pixels).
*/
inline YGValue yogaStyleValueFromFloat(
const Float &value,
YGUnit unit = YGUnitPoint) {
if (std::isnan(value)) {
return YGValueUndefined;
}
return {(float)value, unit};
}
inline folly::Optional<Float> optionalFloatFromYogaValue(
const YGValue value,
folly::Optional<Float> base = {}) {
switch (value.unit) {
case YGUnitUndefined:
return {};
case YGUnitPoint:
return floatFromYogaFloat(value.value);
case YGUnitPercent:
return base.has_value()
? folly::Optional<Float>(
base.value() * floatFromYogaFloat(value.value))
: folly::Optional<Float>();
case YGUnitAuto:
return {};
}
}
inline LayoutMetrics layoutMetricsFromYogaNode(YGNode &yogaNode) {
auto layoutMetrics = LayoutMetrics{};
layoutMetrics.frame =
Rect{Point{floatFromYogaFloat(YGNodeLayoutGetLeft(&yogaNode)),
floatFromYogaFloat(YGNodeLayoutGetTop(&yogaNode))},
Size{floatFromYogaFloat(YGNodeLayoutGetWidth(&yogaNode)),
floatFromYogaFloat(YGNodeLayoutGetHeight(&yogaNode))}};
layoutMetrics.borderWidth = EdgeInsets{
floatFromYogaFloat(YGNodeLayoutGetBorder(&yogaNode, YGEdgeLeft)),
floatFromYogaFloat(YGNodeLayoutGetBorder(&yogaNode, YGEdgeTop)),
floatFromYogaFloat(YGNodeLayoutGetBorder(&yogaNode, YGEdgeRight)),
floatFromYogaFloat(YGNodeLayoutGetBorder(&yogaNode, YGEdgeBottom))};
layoutMetrics.contentInsets = EdgeInsets{
layoutMetrics.borderWidth.left +
floatFromYogaFloat(YGNodeLayoutGetPadding(&yogaNode, YGEdgeLeft)),
layoutMetrics.borderWidth.top +
floatFromYogaFloat(YGNodeLayoutGetPadding(&yogaNode, YGEdgeTop)),
layoutMetrics.borderWidth.right +
floatFromYogaFloat(YGNodeLayoutGetPadding(&yogaNode, YGEdgeRight)),
layoutMetrics.borderWidth.bottom +
floatFromYogaFloat(YGNodeLayoutGetPadding(&yogaNode, YGEdgeBottom))};
layoutMetrics.displayType = yogaNode.getStyle().display() == YGDisplayNone
? DisplayType::None
: DisplayType::Flex;
layoutMetrics.layoutDirection =
YGNodeLayoutGetDirection(&yogaNode) == YGDirectionRTL
? LayoutDirection::RightToLeft
: LayoutDirection::LeftToRight;
return layoutMetrics;
}
inline YGDirection yogaDirectionFromLayoutDirection(LayoutDirection direction) {
switch (direction) {
case LayoutDirection::Undefined:
return YGDirectionInherit;
case LayoutDirection::LeftToRight:
return YGDirectionLTR;
case LayoutDirection::RightToLeft:
return YGDirectionRTL;
}
}
inline void fromRawValue(const RawValue &value, YGDirection &result) {
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
if (stringValue == "inherit") {
result = YGDirectionInherit;
return;
}
if (stringValue == "ltr") {
result = YGDirectionLTR;
return;
}
if (stringValue == "rtl") {
result = YGDirectionRTL;
return;
}
LOG(FATAL) << "Could not parse YGDirection:" << stringValue;
assert(false);
}
inline void fromRawValue(const RawValue &value, YGFlexDirection &result) {
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
if (stringValue == "row") {
result = YGFlexDirectionRow;
return;
}
if (stringValue == "column") {
result = YGFlexDirectionColumn;
return;
}
if (stringValue == "column-reverse") {
result = YGFlexDirectionColumnReverse;
return;
}
if (stringValue == "row-reverse") {
result = YGFlexDirectionRowReverse;
return;
}
LOG(FATAL) << "Could not parse YGFlexDirection:" << stringValue;
assert(false);
}
inline void fromRawValue(const RawValue &value, YGJustify &result) {
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
if (stringValue == "flex-start") {
result = YGJustifyFlexStart;
return;
}
if (stringValue == "center") {
result = YGJustifyCenter;
return;
}
if (stringValue == "flex-end") {
result = YGJustifyFlexEnd;
return;
}
if (stringValue == "space-between") {
result = YGJustifySpaceBetween;
return;
}
if (stringValue == "space-around") {
result = YGJustifySpaceAround;
return;
}
if (stringValue == "space-evenly") {
result = YGJustifySpaceEvenly;
return;
}
LOG(FATAL) << "Could not parse YGJustify:" << stringValue;
assert(false);
}
inline void fromRawValue(const RawValue &value, YGAlign &result) {
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
if (stringValue == "auto") {
result = YGAlignAuto;
return;
}
if (stringValue == "flex-start") {
result = YGAlignFlexStart;
return;
}
if (stringValue == "center") {
result = YGAlignCenter;
return;
}
if (stringValue == "flex-end") {
result = YGAlignFlexEnd;
return;
}
if (stringValue == "stretch") {
result = YGAlignStretch;
return;
}
if (stringValue == "baseline") {
result = YGAlignBaseline;
return;
}
if (stringValue == "between") {
result = YGAlignSpaceBetween;
return;
}
if (stringValue == "space-around") {
result = YGAlignSpaceAround;
return;
}
LOG(FATAL) << "Could not parse YGAlign:" << stringValue;
assert(false);
}
inline void fromRawValue(const RawValue &value, YGPositionType &result) {
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
if (stringValue == "relative") {
result = YGPositionTypeRelative;
return;
}
if (stringValue == "absolute") {
result = YGPositionTypeAbsolute;
return;
}
LOG(FATAL) << "Could not parse YGPositionType:" << stringValue;
assert(false);
}
inline void fromRawValue(const RawValue &value, YGWrap &result) {
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
if (stringValue == "nowrap") {
result = YGWrapNoWrap;
return;
}
if (stringValue == "wrap") {
result = YGWrapWrap;
return;
}
if (stringValue == "wrap-reverse") {
result = YGWrapWrapReverse;
return;
}
LOG(FATAL) << "Could not parse YGWrap:" << stringValue;
assert(false);
}
inline void fromRawValue(const RawValue &value, YGOverflow &result) {
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
if (stringValue == "visible") {
result = YGOverflowVisible;
return;
}
if (stringValue == "hidden") {
result = YGOverflowHidden;
return;
}
if (stringValue == "scroll") {
result = YGOverflowScroll;
return;
}
LOG(FATAL) << "Could not parse YGOverflow:" << stringValue;
assert(false);
}
inline void fromRawValue(const RawValue &value, YGDisplay &result) {
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
if (stringValue == "flex") {
result = YGDisplayFlex;
return;
}
if (stringValue == "none") {
result = YGDisplayNone;
return;
}
LOG(FATAL) << "Could not parse YGDisplay:" << stringValue;
assert(false);
}
inline void fromRawValue(const RawValue &value, YGStyle::ValueRepr &result) {
if (value.hasType<Float>()) {
result = yogaStyleValueFromFloat((Float)value);
return;
} else if (value.hasType<std::string>()) {
const auto stringValue = (std::string)value;
if (stringValue == "auto") {
result = YGValueUndefined;
return;
} else {
if (stringValue.back() == '%') {
result = YGValue{
folly::to<float>(stringValue.substr(0, stringValue.length() - 1)),
YGUnitPercent};
return;
} else {
result = YGValue{folly::to<float>(stringValue), YGUnitPoint};
return;
}
}
}
result = YGValueUndefined;
}
inline void fromRawValue(const RawValue &value, YGFloatOptional &result) {
if (value.hasType<float>()) {
result = YGFloatOptional((float)value);
return;
} else if (value.hasType<std::string>()) {
const auto stringValue = (std::string)value;
if (stringValue == "auto") {
result = YGFloatOptional();
return;
}
}
LOG(FATAL) << "Could not parse YGFloatOptional";
assert(false);
}
inline Float toRadians(const RawValue &value) {
if (value.hasType<Float>()) {
return (Float)value;
}
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
char *suffixStart;
double num = strtod(
stringValue.c_str(), &suffixStart); // can't use std::stod, probably
// because of old Android NDKs
if (0 == strncmp(suffixStart, "deg", 3)) {
return num * M_PI / 180;
}
return num; // assume suffix is "rad"
}
inline void fromRawValue(const RawValue &value, Transform &result) {
assert(value.hasType<std::vector<RawValue>>());
auto transformMatrix = Transform{};
auto configurations = static_cast<std::vector<RawValue>>(value);
for (const auto &configuration : configurations) {
if (!configuration.hasType<better::map<std::string, RawValue>>()) {
// TODO: The following checks have to be removed after codegen is shipped.
// See T45151459.
continue;
}
auto configurationPair =
static_cast<better::map<std::string, RawValue>>(configuration);
auto pair = configurationPair.begin();
auto operation = pair->first;
auto &parameters = pair->second;
if (operation == "matrix") {
assert(parameters.hasType<std::vector<Float>>());
auto numbers = (std::vector<Float>)parameters;
assert(numbers.size() == transformMatrix.matrix.size());
auto i = 0;
for (auto number : numbers) {
transformMatrix.matrix[i++] = number;
}
} else if (operation == "perspective") {
transformMatrix =
transformMatrix * Transform::Perspective((Float)parameters);
} else if (operation == "rotateX") {
transformMatrix =
transformMatrix * Transform::Rotate(toRadians(parameters), 0, 0);
} else if (operation == "rotateY") {
transformMatrix =
transformMatrix * Transform::Rotate(0, toRadians(parameters), 0);
} else if (operation == "rotateZ" || operation == "rotate") {
transformMatrix =
transformMatrix * Transform::Rotate(0, 0, toRadians(parameters));
} else if (operation == "scale") {
auto number = (Float)parameters;
transformMatrix =
transformMatrix * Transform::Scale(number, number, number);
} else if (operation == "scaleX") {
transformMatrix =
transformMatrix * Transform::Scale((Float)parameters, 1, 1);
} else if (operation == "scaleY") {
transformMatrix =
transformMatrix * Transform::Scale(1, (Float)parameters, 1);
} else if (operation == "scaleZ") {
transformMatrix =
transformMatrix * Transform::Scale(1, 1, (Float)parameters);
} else if (operation == "translate") {
auto numbers = (std::vector<Float>)parameters;
transformMatrix = transformMatrix *
Transform::Translate(numbers.at(0), numbers.at(1), 0);
} else if (operation == "translateX") {
transformMatrix =
transformMatrix * Transform::Translate((Float)parameters, 0, 0);
} else if (operation == "translateY") {
transformMatrix =
transformMatrix * Transform::Translate(0, (Float)parameters, 0);
} else if (operation == "skewX") {
transformMatrix =
transformMatrix * Transform::Skew(toRadians(parameters), 0);
} else if (operation == "skewY") {
transformMatrix =
transformMatrix * Transform::Skew(0, toRadians(parameters));
}
}
result = transformMatrix;
}
inline void fromRawValue(const RawValue &value, PointerEventsMode &result) {
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
if (stringValue == "auto") {
result = PointerEventsMode::Auto;
return;
}
if (stringValue == "none") {
result = PointerEventsMode::None;
return;
}
if (stringValue == "box-none") {
result = PointerEventsMode::BoxNone;
return;
}
if (stringValue == "box-only") {
result = PointerEventsMode::BoxOnly;
return;
}
LOG(FATAL) << "Could not parse PointerEventsMode:" << stringValue;
assert(false);
}
inline void fromRawValue(const RawValue &value, BackfaceVisibility &result) {
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
if (stringValue == "auto") {
result = BackfaceVisibility::Auto;
return;
}
if (stringValue == "visible") {
result = BackfaceVisibility::Visible;
return;
}
if (stringValue == "hidden") {
result = BackfaceVisibility::Hidden;
return;
}
LOG(FATAL) << "Could not parse BackfaceVisibility:" << stringValue;
assert(false);
}
inline void fromRawValue(const RawValue &value, BorderStyle &result) {
assert(value.hasType<std::string>());
auto stringValue = (std::string)value;
if (stringValue == "solid") {
result = BorderStyle::Solid;
return;
}
if (stringValue == "dotted") {
result = BorderStyle::Dotted;
return;
}
if (stringValue == "dashed") {
result = BorderStyle::Dashed;
return;
}
LOG(FATAL) << "Could not parse BorderStyle:" << stringValue;
assert(false);
}
inline std::string toString(
const std::array<float, yoga::enums::count<YGDimension>()> &dimensions) {
return "{" + folly::to<std::string>(dimensions[0]) + ", " +
folly::to<std::string>(dimensions[1]) + "}";
}
inline std::string toString(const std::array<float, 4> &position) {
return "{" + folly::to<std::string>(position[0]) + ", " +
folly::to<std::string>(position[1]) + "}";
}
inline std::string toString(
const std::array<float, yoga::enums::count<YGEdge>()> &edges) {
return "{" + folly::to<std::string>(edges[0]) + ", " +
folly::to<std::string>(edges[1]) + ", " +
folly::to<std::string>(edges[2]) + ", " +
folly::to<std::string>(edges[3]) + "}";
}
inline std::string toString(const YGDirection &value) {
switch (value) {
case YGDirectionInherit:
return "inherit";
case YGDirectionLTR:
return "ltr";
case YGDirectionRTL:
return "rtl";
}
}
inline std::string toString(const YGFlexDirection &value) {
switch (value) {
case YGFlexDirectionColumn:
return "column";
case YGFlexDirectionColumnReverse:
return "column-reverse";
case YGFlexDirectionRow:
return "row";
case YGFlexDirectionRowReverse:
return "row-reverse";
}
}
inline std::string toString(const YGJustify &value) {
switch (value) {
case YGJustifyFlexStart:
return "flex-start";
case YGJustifyCenter:
return "center";
case YGJustifyFlexEnd:
return "flex-end";
case YGJustifySpaceBetween:
return "space-between";
case YGJustifySpaceAround:
return "space-around";
case YGJustifySpaceEvenly:
return "space-evenly";
}
}
inline std::string toString(const YGAlign &value) {
switch (value) {
case YGAlignAuto:
return "auto";
case YGAlignFlexStart:
return "flex-start";
case YGAlignCenter:
return "center";
case YGAlignFlexEnd:
return "flex-end";
case YGAlignStretch:
return "stretch";
case YGAlignBaseline:
return "baseline";
case YGAlignSpaceBetween:
return "space-between";
case YGAlignSpaceAround:
return "space-around";
}
}
inline std::string toString(const YGPositionType &value) {
switch (value) {
case YGPositionTypeRelative:
return "relative";
case YGPositionTypeAbsolute:
return "absolute";
}
}
inline std::string toString(const YGWrap &value) {
switch (value) {
case YGWrapNoWrap:
return "no-wrap";
case YGWrapWrap:
return "wrap";
case YGWrapWrapReverse:
return "wrap-reverse";
}
}
inline std::string toString(const YGOverflow &value) {
switch (value) {
case YGOverflowVisible:
return "visible";
case YGOverflowScroll:
return "scroll";
case YGOverflowHidden:
return "hidden";
}
}
inline std::string toString(const YGDisplay &value) {
switch (value) {
case YGDisplayFlex:
return "flex";
case YGDisplayNone:
return "none";
}
}
inline std::string toString(const YGValue &value) {
switch (value.unit) {
case YGUnitUndefined:
return "undefined";
case YGUnitPoint:
return folly::to<std::string>(value.value);
case YGUnitPercent:
return folly::to<std::string>(value.value) + "%";
case YGUnitAuto:
return "auto";
}
}
inline std::string toString(const YGFloatOptional &value) {
if (value.isUndefined()) {
return "undefined";
}
return folly::to<std::string>(floatFromYogaFloat(value.unwrap()));
}
inline std::string toString(const YGStyle::Dimensions &value) {
return "{" + toString(value[0]) + ", " + toString(value[1]) + "}";
}
inline std::string toString(const YGStyle::Edges &value) {
static std::array<std::string, yoga::enums::count<YGEdge>()> names = {
{"left",
"top",
"right",
"bottom",
"start",
"end",
"horizontal",
"vertical",
"all"}};
auto result = std::string{};
auto separator = std::string{", "};
for (auto i = 0; i < yoga::enums::count<YGEdge>(); i++) {
YGValue v = value[i];
if (v.unit == YGUnitUndefined) {
continue;
}
result += names[i] + ": " + toString(v) + separator;
}
if (!result.empty()) {
result.erase(result.length() - separator.length());
}
return "{" + result + "}";
}
} // namespace react
} // namespace facebook